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Abstract  

The starting point for this project was a longstanding public concern about the state of school 

mathematics in Denmark, compared with results from other countries, in particular in East Asia, 

and not least when focusing on arithmetic and algebra. Our first step was to develop a method 

for diagnosing the current “state” in a more comprehensive way than to simply look at students’ 

results on tests and the obvious difference between school mathematics curricula in Denmark 

and in East-Asian countries like Singapore and Japan. The diagnosis is based on praxeological 

analysis in the sense of ATD (the anthropological theory of the didactic). It shows a gap between 

the official goals and the current teaching where algebra is not extensively taught as a modeling 

tool and students’ success with associated tasks is similarly modest. The didactic transposition of 

school algebra appears rather fragmented, distributed over several years and without a core 

progression that is actually taught to, and learnt by, all students. 

The diagnosis provides further motivation and context to the main goal of this thesis: 

investigating to what extent a research-based textbook material can support teachers (who do not 

habitually have access to such material) in the teaching of introductory school algebra. 

Concretely, we have investigated how Danish lower secondary school teachers use a translation 

of the relevant chapter from a Japanese textbook, with almost no instructions for how to use the 

text; and to what extent this use supports the students’ transition from arithmetic to algebra.  

Both the differences in mathematical progression in the two curricula, and in habitual 

organization of didactic processes, lead to expect a number of obstacles to the implementation of 

the Japanese text in a Danish context. While these were also to some extent observed, we found a 

number of unexpected or at least non-trivial potentials of the use of the Japanese material.  

Teachers successfully used the chapters’ challenging “launch problem” to demonstrate 

school algebra as a modelling tool and to furnish a common example for several points in the 

chapter, and they were able to implement the focus on explaining and justifying important 

notational conventions (like the suppression of the multiplication symbol in most algebraic 

expressions).  Concrete tasks and explanations in the text were generally used in the teaching 

without substantial obstacles. It appeared to be much less straightforward to realize the 

textbook’s aims concerning theory (general principles and definitions). Despite these challenges, 

our data suggest that the teacher’ didactical and mathematical profit from using the Japanese 

textbook went beyond what appeared directly in their first attempt to use it in teaching, so that 

later use could conceivably realize the potential of the text more fully. 
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Resumé  

Udgangspunktet for dette projekt er en mangeårig offentlig bekymring over skolematematikkens 

tilstand i Danmark, specielt indenfor aritmetik og algebra, særlig når man sammenligner danske 

resultater i internationale undersøgelser med resultater fra især Østasiatiske lande. Første skridt i 

projektet var at udvikle en metode til at diagnosticere den nuværende »tilstand« på en mere 

omfattende måde, end blot at se på elevernes resultater i test eller på den åbenlyse forskel der er 

mellem skolematematikkens læseplaner i Danmark og i lande som Singapore og Japan. 

Diagnosen er baseret på praxeologisk analyse i betydningen ATD (den antropologiske didaktiske 

teori). Diagnosen viser en afstand mellem de officielle mål og den nuværende undervisning, hvor 

algebra ikke i udstrakt grad undervises som et modelleringsværktøj, og elevernes succes med 

tilknyttede opgaver er tilsvarende beskeden. Den didaktiske omsætning af skolealgebra er 

fragmenteret, da den er fordelt over flere år og uden tydelig progression eller kerneelementer, der 

læres af alle elever. 

Diagnosen giver yderligere motivation og baggrund for denne afhandlings hovedformål: at 

undersøge, i hvilket omfang et forskningsbaseret lærebogsmateriale kan støtte lærere i 

undervisningen i skolealgebra. Konkret er der undersøgt, hvordan danske folkeskolelærere 

bruger en oversættelse af et relevant kapitel fra en japansk lærebog, uden lærerne fik nærmere 

instruktioner i brug af materialet, og i hvilket omfang denne lærebogsbrug understøtter elevernes 

overgang fra aritmetik til algebra. Forskellene i den matematiske progression i de to læreplaner 

gav anledning til at forvente en række forhindringer i anvendelsen af den japanske lærebog i en 

dansk kontekst. Disse forhindringer blev til en vis grad observeret, men der er også en række 

uventede fund eller ikke-trivielle potentialer i brugen af det japanske materiale.  

Lærerne brugte med succes kapitlets udfordrende »åbningsproblem« til at demonstrere 

skolealgebra som et modelleringsværktøj og som fælles reference-eksempel gennem kapitlet. 

Lærerne implementerede også kapitlet fokus på at forklare og begrunde vigtige 

notationskonventioner, som f.eks. undertrykkelse af multiplikationssymbolet i de fleste 

algebraiske udtryk. Generelt blev materialets konkrete opgaver og forklaringer brugt i 

undervisningen uden væsentlige forhindringer. Det var dog tegn på at det er mindre ligetil at 

realisere lærebogens teoretiske mål (generelle principper og definitioner). På trods af disse 

udfordringer tyder vores data på, at lærernes didaktiske og matematiske udbytte af at bruge den 

japanske lærebog går ud over, hvad der fremgik direkte af deres første forsøg, så senere brug 

kunne tænkes at realisere tekstens potentiale mere fuldt ud. 
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1 Introduction 

The thesis consists of five peer reviewed papers (of which two are still in second review), 

complemented by the present introductory text which provides  

- an overview of central problems and ideas in the thesis (section 1) 

- outline of the theoretical framework (section 2) on which the research questions (section 

4) and the methodology (section 5) are based 

- a systematic and relatively extensive review (section 3) of previous research in the areas 

related to the research questions, lending further motivation and context to these 

- a comprehensive outline and discussion of the results presented in the five papers 

(sections 6 and 7) 

- conclusions related to the overarching research questions of the thesis (section 8). 

1.1 Motivation 

The teaching of basic algebra at the lower secondary school level has a significant impact on 

students’ subsequent educational prospects and constitutes a fundamental component of 

mathematics at the upper secondary school level (Grønmo, 2018). Analysis of data from 

international large-scale studies has revealed significant differences between countries when it 

comes to the outcomes of this and other crucial parts of school mathematics. The PISA 2018 

study has shown that 14.8 % of Danish grade 9 students can be described as low achievers in 

mathematics (Christensen, 2019). These somewhat disappointing results do not only appear at 

such advanced levels, but can be traced back to primary school, with a declining trend.  

According to the TIMSS study from 2019, there has been a significant decline in the 

mathematical skills of Danish fourth graders (aged 10-11) (Keldsen et al., 2021). Danish media 

echo and reinforce this narrative about unsatisfactory and declining mathematical skills among 

Danish students at all educational levels. For instance, it attracted significant public attention that 

more than 70% of first-year students at Copenhagen Business School failed a screening test on 

basic arithmetic and algebra (Ritzau, 2020). The PISA 2022 study led to headlines such as 

“Danish students have never performed worse in mathematics” (Ravn, 2023), “Danish 15-year-
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old have become “significantly” worse at reading and mathematics: Causes for concern” (Tofte, 

2023) and “One in five Danish students do too badly in mathematics to become an engaged 

citizen” (Bjerril, 2024).  

The widespread concern about students’ results in mathematics relates to a more or less 

explicit awareness of the functions of the discipline in the life of individuals, in education, at the 

labor market and in society. This motivates the political interest of studies such as TIMSS and 

PISA, confirmed for instance by the fact that PISA is organized and funded by the OECD, 

operating more generally with the idea of “knowledge economy” in which competences, and not 

least mathematical competences, are crucial currencies (cf. Gonczi, 2006). Subsequently, 

mathematics educators in Denmark and other countries have assumed the task of specifying and 

framing such competences in school settings. The version adapted for curriculum writing in the 

Danish context considers mathematical competence as follows: “to be able to act appropriately 

way in situations involving mathematics” (Niss & Jensen, 2002; Education, 2019). Furthermore, 

elaborate definitions of particular mathematical competences (such as “problem solving 

competence”) are more or less explicitly referred to in the current programs.  

Non-withstanding the efforts to adjust Danish curricula to international trends of aligning 

educational and economical strategies, the aforementioned disappointments related to 

international measurements of students’ mathematical knowledge or competence have continued 

to occur. The government has appointed a wealth of committees and “expert groups” to try to 

provide advice on how to cope with this so-called “math crises”. Most recently, the Danish 

Ministry of Children and Education established a “mathematics expert group”, consisting of 

teachers from primary and lower secondary school, upper secondary schools, vocational 

education, university colleges and universities, including a few researchers in mathematics 

education. The relatively broad constitution of this group enabled a focus on transitions between 

different institutions and thus the way in which the “math problem” arises and accumulates 

across the entire educational system. The remit of the expert group was to identify the key 

challenges and a gross catalogue of recommendations stretching across the institutional spectrum 

from comprehensive school to upper secondary and vocational education (Education, 2022).   

One of the key challenges identified concerns the area “arithmetic and algebra”, where 

students’ progression from primary school to secondary education and into higher education 

needs further attention as failures are deemed to be of lasting and detrimental nature to 

mathematics learning more generally (Education, 2022). This can to some extent be considered a 

departure from the popular, but increasingly obsolete idea that mathematics learning can be 
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reduced to developing generic competences without explicit and continuous attention to 

knowledge and skills in particular key domains. 

The first solution recommended by the group of experts was to elaborate and implement an 

“arithmetic- and algebra strategy” for the next 8 – 10 years, to establish a broad understanding of 

the seriousness of the existing challenges in arithmetic and algebra across educational 

institutions, and to strengthen research in the didactics of arithmetic and algebra at all levels 

(Education, 2022).  

 It is my intention to contribute to the last part of this recommendation by providing a more 

comprehensive diagnosis of the challenges encountered in the transition from arithmetic to 

algebra in lower secondary school. A multi-faceted diagnosis could conceivably be used as the 

basis of targeted interventions like the choice and use of quality instructional materials relating 

to the transition from arithmetic to algebra, as considered in this thesis. As a teacher educator, 

my interest in the quality of instructional materials is in part related to a concern about the role 

that mathematics teachers could play in updating and reinforcing the teaching of algebra at the 

lower secondary level. 

1.2 The didactic transposition as a theoretical framework for the guidance of the 
research. 

Teacher educators (as the author of this thesis) are well situated to experience that educational 

problems must be considered from a wider systemic perspective and cannot be reduced to single 

factors like the formal preservice training, the official curriculum, textbooks etc. – they all have 

their place and role but neither can be expected to be independent of the other. The systemic 

perspective implies larger units of analysis than classical classroom research, psychometric 

testing etc.: we need to address the way in which mathematical knowledge (in a broad sense) is 

disseminated in and between educational institution as well as in society at large, or in short: 

didactical phenomena. I will now explain how didactic transposition provides the necessary 

systemic perspective for my study. 

Chevallard (1985) published a foundational first elaboration of a theory on how knowledge 

“travels” from its origin and forms in scholarly institutions, to be subsequently selected and 

declared as knowledge to be taught in school, to become finally taught and learnt knowledge in 

didactic institutions (cf. also Chevallard & Bosch, 2020). Through case studies (not least related 

to the radical reforms of secondary school in the 1970s) this initial work demonstrated that the 

knowledge taught at school is derived from other institutions, shaped by concrete practice and 
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organized and reorganized as “knowledge objects” which may appear quite different from their 

origin.  

The didactic transposition in mathematics education has its origins in what Chevallard describes 

as scholarly knowledge, which concerns both academic and societal forms of mathematical 

practice and theory (Chevallard & Bosch, 2014). This knowledge is then transposed (selected, 

adapted, reformulated…) to knowledge to be taught; the authors or producers of this 

transposition are policy makers, curriculum designers, and textbook authors. This group of 

positions in relation to the didactical transposition is called the noosphere, as the persons filling 

these position “think” about teaching in schools but are positioned in a “sphere” around but 

outside of the school institution. The main role of the noosphere is to negotiate and deal with the 

demands that society places on the educational system, while selecting, declaring and 

reorganizing scholarly knowledge to form the knowledge to be taught (Chevallard, 2019). The 

noosphere has considerable impact on the extent to which specific objects, connections and 

foundations from the scholarly knowledge are preserved, or conversely abandoned in order to 

accommodate new and pressing needs and demands from society at large. Especially when crises 

arise with respect to the learnt knowledge, as was alluded to in the previous section, it can be 

important for locating causes to consider this earlier part of the transposition, like whether 

crucial elements have been omitted (Bosch & Cascón, 2006); any intervention in the school 

institution must take the knowledge to be taught into account. The transposition process as a 

whole is commonly represented as in Figure 1.  

 

Figure 1: diagram of the process of didactic transposition, modified from (Chevallard & Bosch, 2014) 

 

While the process appears in this rough illustration as one directional, there is of course also 

elements of response or retroaction in the opposite direction. If the learnt knowledge differs 

markedly from the taught knowledge, it can evidently impact on later versions of the taught 

knowledge; interaction between teachers and students can of course also make this retroaction 

almost immediate. If the taught knowledge undergoes changes, it may influence the noosphere 

and consequently the knowledge to be taught. Other opposite impacts, directly from 

measurements of learnt knowledge to the noosphere, were alluded to in the previous section. 
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knowledge

Knowledge to be 
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Similarly poor exam results after primary school create a demand for educational institutions to 

improve in more or less unspecified manners. In the context of Danish strategy for arithmetic 

and algebra, the noosphere was entrusted with the responsibility of formulating 

recommendations for school institutions and (at least in theory) also for its own activity of 

specifying knowledge to be taught.  

 The transposition process within the school, from knowledge to be taught through taught 

knowledge to learnt knowledge is called internal didactic transposition, while the transposition 

from scholarly knowledge to knowledge to be taught, carried out by the noosphere outside of the 

school institution, is called external didactic transposition (Bosch & Gascón, 2006; Chevallard 

2019). Almost all “mainstream” research on mathematics education is concerned with 

mechanisms and interventions in the internal didactic transposition. To make our position on the 

external didactic transposition clear, we elaborate on it in the next two sections. 

1.3 External didactic transposition 

This process is influenced by various institutions. For instance, as illustrated in section 1.1, 

multiple institutions hold different views on the state of algebra education in Danish schools, 

thereby influencing the broader educational discourse. By examining historical changes in how 

scholarly mathematical knowledge is transposed into curriculum resources, we may also gain 

some knowledge about how the knowledge to be taught in (and with it, indirectly, the teaching 

of) school algebra has evolved over time (Strømskag & Chevallard, 2022).  

Research has shown that teachers rely massively on textbooks and other resources for 

teaching (e.g. Arsac et al., cited in Chevallard & Bosch, 2014). Mathematics textbook materials 

therefore have an important role as mediator between official guidelines and teachers work 

(Tesfamicael & Lundeby, 2019). It is rare that teachers who use curriculum resources to plan 

their lessons question the choices and the selections made in the external didactic transposition 

process, to the extent that it may seem almost transparent or invisible to them. It is mostly in 

periods of massive change that it becomes visible while in daily practice, it is perceived as a 

form of “school nature”. It is one of the fundamental ideas of modern didactics (e.g. Brousseau 

1997, p. 21) to insist on the importance of epistemological vigilance not only within the school 

institution, but also and particularly in relation to the external transposition. 

 We now briefly turn to the case of the current external didactic transposition for Danish 

lower secondary school (DLS), as illustration of the above abstract ideas, and as part of the 

context for this thesis. 



6 

 

1.4 The Danish external didactic transposition  

The official description of mathematics in Danish primary- and lower secondary school (students 

aged 6 to 16) has three overall paragraphs descriptions of the purpose of mathematics in schools 

(Education, 2019, p.3 – translated by the author).  

 

• §1. In the subject of mathematics, students shall develop mathematical competences and 

acquire skills and knowledge to enable them to behave appropriately in mathematics-related 

situations in their current and future daily, leisure, educational, working and social lives. 

• §2. Pupils' learning must be based on their being able to experience, independently and 

through dialogue and collaboration with others, that mathematics requires and promotes 

creative activity, and that mathematics provides tools for problem solving, argumentation and 

communication.  

• §3. The subject of mathematics must help students experience and recognize the role of 

mathematics in a historical, cultural and societal context, and students must be able to 

evaluate the use of mathematics in order to take responsibility and exert influence in a 

democratic community. 

 

The more specific parts of the national program for mathematics in grades 1-9 (called “Common 

Objectives” and here abbreviated to (CO) are organized according to four so-called competence 

areas: Mathematical competences, numbers and algebra, geometry and measurement, and 

statistics and probability. For each of these four areas, CO specifies so-called “competence aims” 

to be achieved after grade 3, 6 and 9. For example, the competence aim for numbers and algebra 

after grade 9 is that “the students must be able to use real numbers and algebraic expressions in 

mathematical investigations” (Education, 2019 p.7). Algebra as a domain in CO is divided into 

the sectors: equations, formulae and algebraic expressions, functions. Each of these sectors 

contains three pairs of so-called “guiding skills and knowledge objectives “that are meant to 

serve as inspiration for teachers, rather than as binding aims (Quality, 2022). For example, the 

final skills and knowledge objectives for the “Formulas and algebraic expression” sector after 

grade 9 are that “The students can compare algebraic expressions” and that “the student has 

knowledge of rules for calculations with real numbers” (Education, 2019).   

These very broadly described competence goals, which are mostly optional, can then be 

considered the first part of the Danish external transposition. Other noospherians subsequently 
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produce textbooks based on this first part; the authors are typically “prominent” teachers or 

teacher educators, and in fact sometimes involve also authors of the CO.  

 Most mathematics textbooks for Danish primary and lower secondary school refer 

explicitly to CO. But unlike countries like Japan and Singapore (Yoshikawa, 2008; Soh, 2008), 

there is no infrastructure or tradition for systematic empirical testing and evaluation of textbook 

materials, beyond the fact that the publishing companies may exert some influence through their 

disciplinary editors and the requirements they can pose for authors. Danish textbooks are thus 

largely based on their authors’ personal didactic ideas and experiences, and sometimes ideas 

taken from a broader international literature on mathematics education (like publications and 

designs from the realistic mathematics education community). They are basically commercial 

products, approved and marketed by independent publishers. Any such product may be adopted 

by teachers or schools, with no centralized authorization or approval being in play.  

1.5 Can curricula be imported? 

Singapore and Japan have gained a reputation for excellence in mathematics education, mainly 

because of their results in international comparative surveys. These convincing and consistent 

outcomes are ascribed, by the research literature, to the quality of their teaching methods 

(roughly speaking, ambitions problem solving by students) and also the quality of the 

mathematics curriculum, including textbooks (Takahashi, 2021; Ginsburg et al., 2005). 

 This has led some to hypothesize that the use of imported curriculum elements (primarily, 

textbooks) from Singapore and Japan might contribute to improve students’ results in other 

countries (Ginsburg et al., 2005). The assumption of textbook imports is that institutions and 

teachers could adapt the use of the foreign (translated) textbooks to their local constraints, or 

even adapt the foreign official program more or less wholesale in contexts (like the US or 

Denmark) where the official program contains mainly optional recommendations when it comes 

to the concrete knowledge to be taught. The rationale for such curriculum imports has been 

formulated in terms of a cost-benefit analysis: the change certainly involves initial costs 

(translation, adaptation of texts, teacher training) but the financial value for society that is gained 

from students’ lifelong benefits are estimated to far outweigh the initial costs (Reys et al., 2004). 

 A common and rather evident argument against international curriculum import is that the 

material could have severe cultural biases that would be an obstacle to adaptation. (Fan et al., 

2013). It is also conceivable, for a given national context, that some specific and crucial areas of 

mathematics are not adequately covered in the available textbooks, while international materials 
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could be used to fill these gaps, even if the material come from different curriculum structures 

and cultures. Thus, rather than wholesale import, the import could be local and partial. There 

seems to be much less empirical (let alone research) on this hypothesis for “partial, area-

specific” curriculum import.  We notice here that “import” could conceivably take place between 

institutions in the same country, while above and in the sequel, we consider only import from 

one national school system to another. This, in fact, leads to some of the initially formulated 

questions that have driven this project: What could determine the success or failure of importing 

and adapting research-based mathematics textbook material for teaching specific areas of school 

mathematics? What are the implications for the internal didactic transposition? And our more 

specific interest: To what extent can the challenges for school algebra in DLS be addressed 

through the use of structured, research-based text material – what adaptations are needed or 

desirable?  

We illustrate the general mechanism of curriculum import in Figure 2. The upper part of the 

figure shows the didactic transposition in the national context from where the curriculum is 

imported. The lower part of the model shows the didactic transposition in the receiving 

institutions.  

 Curriculum is often used as a collective term for both official aims and objectives, 

syllabuses, teaching guidelines, textbooks material and other resources that form the knowledge 

to be taught. In the model, we need to be able to separate the official programs form the textbook 

in order to examine the transposition between these two curricular resources.  

EDT1 is the external didactic transposition from Scholarly Knowledge (SK) to Official Program 

(OP) as part of the curriculum and knowledge to be taught, as described above. EDT2 is the 

transposition from OP to Textbooks (TB), an inner-curricular transposition to be found in 

knowledge to be taught. The internal didactic transposition thus goes from TB in one institution 

to Taught Knowledge (TK) in another institution, illustrated by the arrow from TB to TK. 
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Figure 2: The transposition process of adapting foreign textbook into DLS  

 

In order to study the didactic transposition process described in figure 2 we need theoretical and 

methodological tools that allow us to explain the phenomena that arise or appear when using a 

foreign curriculum (wholly, or in part).  

 More generally, we are interested in investigating the conditions and constraints for 

learning school algebra and describe what create and regulate this learning. We are also 

interested in how school algebra could be modified in a certain direction through partial textbook 

import, and what the consequences of such a modification would be. In the terms of Gascón 

(2024), these analyses are concerned with the ecology of the current or possible modalities of 

study in an institution. The Anthropological Theory of Didactic (ATD), in its contemporary 

form, provides both a theoretical foundation and methodological tools for studying ecological 

problems in more detail. 
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2 The Anthropological Theory of the Didactic 

The anthropological theory of the didactic or ATD is characterized by addressing questions 

about teaching and learning (more generally, about didactic phenomena) from a wide variety of 

granularities, from the “micro-didactic” (analysis of short teaching situations with very small 

didactic stakes) to the “macro-didactic” (analysis of conditions and constraints on didactic 

phenomena that are shared by a whole civilization). The theory aims to do so in a coherent way, 

so that analyses at the different levels are done in a coherent way. The elaborate figure 3 

summarizes two dimensions in the theory, which are related to this characterization: the levels of 

didactic co-determination (cf. also Chevallard, 2002, p.10 or Chevallard & Bosch, 2020) used, 

and the corresponding the levels of a praxeology (section 2.2). Here, the levels of co-

determination concern the origin and scope of conditions and constraints on the didactic, while 

the praxeological levels relate to the different levels of the human activity (like mathematics) 

which also serve to organize and teach it. 

 

 

Figure 3: Model of mathematical praxeologies realized in school and the relation to levels of didactic 
codetermination, modified from (Artigue & Winsløw, 2010, Fig. 1).   

 

In this thesis we focus on a specific school institution (DLS) and the domain of algebra within 

the discipline of mathematics, both as they are described and practiced within this school.  
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 To investigate how knowledge is transposed within and between institutions, the model of 

didactic co-determinacy levels can provide a structured overview of the institutional conditions 

for didactical transposition (Artigue & Winsløw, 2010; Chevallard, 2019).  For instance, when 

we investigate the use of a Japanese textbook chapter in a Danish classroom, the possible 

hindrance coming from cultural difference amounts to a possible constraint coming from the 

level of Danish society or of Western civilization that would make the use difficult or 

impossible. The model, of course, does not say that this is the case, but we can situate the 

hypothesis within the model. Similarly, if the textbook would rely on a technique from 

arithmetic which is not taught in the Danish school, we would have a constraint coming from the 

subject level. In other words, the ecology for a given or imagined didactic practice (or form of 

internal didactic transposition) can be represented in a structured way where the level indicates 

the origin of observed or imagined conditions and constraints. 

2.1 Institution in ATD 

In ATD, all modelling of didactic phenomena is based on the notion of person, institution, and 

institutional positions (Chevallard, 2019). A person is any human being. An institution is any 

kind of created reality of which human beings can be members. Examples of institutions could 

be a family, a school class, or a football team. In each institution there are a number of positions 

(Bosch & Chevallard, 2020). In a family, there are, for instance, the positions of father, mother 

and children. In a school class, there are at least the positions of teacher and student. A football 

team will often include the positions of goalkeeper and midfielder etc.  

Institutional positions are filled by persons who become subjects in the institution (Strømskag & 

Chevallard, 2022). In the noosphere there are positions such as committee members, ministerial 

curriculum developer, textbook author, or “prominent math teacher”. Notice that a person 

usually occupies a position for some finite time, so often the position remains, the person 

changes. Nevertheless, the institutional positions a person has held will often shape the person. 

Conversely, as subject in the institution, you can also influence and change the position(s) you 

occupy. Finally, an institution is simply a configuration of positions, and institutions generally 

have a considerable stability in spite of changing positions and persons filling them. This means 

that person, institutions and institutional positions are closely linked. They are also essentially 

linked to the next notion we will discuss, that of praxeology, since the positions within an 

institution are very often defined by their relationship to praxeologies for which the institutions 

serve as habitats and in which they can be created, disseminated and developed. 
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2.2 The Praxeologies 

Every human activity, and their outputs, can be described in terms of praxeologies (Chevallard, 

1985; Gascon & Nicolás, 2024). This statement is the core of the theory of human activity 

proposed by the ATD. In ATD, mathematical activity and the study of mathematics is firmly 

placed within the spectrum of human activity (Chevallard, 1999). A praxeology consists of a 

praxis block and a logos block. Praxis described what is done and how: (solving) a type of task 𝑇𝑇 

through the use of a corresponding technique 𝜏𝜏 which serves to solve tasks of the type 𝑇𝑇.  Logos 

is discourse (including inner discourse) about praxis and comes in two forms: technology 𝜃𝜃 

(discourse about techniques) and theory 𝛩𝛩 (discourse for and about technology, to define and 

justify objects beyond the individual technique… abstraction from concrete objects is perhaps 

one of the most fundamental particularities of human capacity).  

A praxeological organization consist of a practical-technical block [𝑇𝑇/𝜏𝜏]  and a technological-

theoretical block [𝜃𝜃/𝛩𝛩]. A punctual praxeology is noted [𝑇𝑇/𝜏𝜏/𝜃𝜃/𝛩𝛩] and consist of the four Ts 

type of task 𝑇𝑇,  technique 𝜏𝜏, technology 𝜃𝜃 and theory 𝛩𝛩 (Chevallard, 1999).  

 As an example, we will first describe a common human activity, washing clothes, in terms 

of praxeologies. A laundry task could be washing white towels. This task can be solved by 

loading the towels into the washing machine, adding the right amount of detergent and starting 

the cotton wash program at 60 degrees. This task and the associated technique constitute the 

praxis block. The logos block consists of discourse about cotton towels which should be washed 

at least at 60 degrees and with the amount of detergent appropriate to the type and amount of 

textiles and their dirtiness and not to forget that white textiles should be washed separately from 

colored textiles. This discourse can be explained by the theory that bacteria are destroyed at 60 

degrees and therefore towels should be washed at a temperature that destroys bacteria. The type 

and amount of detergent must match the type and amount of textile, so the clothes are washed 

clean but without detergent residue remaining in the textiles after washing. Similarly, the 

discourse about not mixing white and colored textiles can be explained by the theory that excess 

dye in textiles can be transferred from dark to light textiles via the water in which they are 

washed. Similarly, you can describe practices for washing silk clothes or synthetic sportswear, 

which require different washing techniques but draw on the same technology and theory about 

detergents and temperature. This allows us to create laundry models where different type of tasks 

and their corresponding techniques have the same level of technology and theory.  
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The example of laundry makes it easier to see that task types are not given from nature, but are 

artefacts produced by, existing in, and varying between institutions.   

Many learn to wash clothes though knowledge about practice e.g. by imitating experienced 

launderers, which means using effective techniques with limited relations to the technology and 

theory. In this situation the logos exist but is not fully visible to the learner, and the dominant 

model for laundry will include a fragmented or invisible level of theory. Similarly, you may find 

that the technique of not mixing colored and white clothes has an impact on the quality of the 

wash, which can be explained by technology and theory. Industrial developments and the use of 

machines influence many human activities, including laundry, emphasizing that praxeologies are 

not static but can also change over time. Although there may seem to be a long way from 

washing clothes to doing mathematics, both can be described in terms of praxeologies and the 

institutions in which they live (Chevallard, 1999). 

 In mathematics, a concrete task could be “Rewrite 2(3 + 𝑥𝑥) ”, which is of the task type 

𝑇𝑇: Rewrite 𝑎𝑎(𝑏𝑏 + 𝑥𝑥) where 𝑎𝑎, 𝑏𝑏 ϵ ℝ, and can be solved using the technique 𝜏𝜏:𝑎𝑎(𝑏𝑏 + 𝑥𝑥) = 𝑎𝑎𝑏𝑏 +

𝑎𝑎𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑎𝑎𝑏𝑏. The first step can be justified by the theory of the distributive law, and the 

second step, to rewrite the expression, can be justified by the convention that terms with x are 

written first. This means that Logos [𝜃𝜃/𝛩𝛩]  consists of the explanation of the above technique 

and (essentially) the distributive law. Together, this forms a punctual praxeology.   

In the example above, the type of task 𝑇𝑇 can be solved by a simple technique 𝜏𝜏, which is evident 

when both 𝑇𝑇 and 𝜏𝜏 are written in a general form. An exercise in a math textbook may contain 

different questions, not all of which can be answered by one or several techniques. This is in 

contrast to a problem that can always be solved using one or more techniques. This means that a 

question can be identified with the type of task that can be solved with a technique (Winsløw et 

al., 2013). The term” technique” is used in a broad sense to refer to what is done to deal with the 

concrete task. The anthropological approach assumes that any task, or the resolution of any 

problem, requires the existence of a technique, even though the technique is hidden or difficult to 

describe (Barbé et a., 2005).  

 It is convenient to understand a mathematical praxeology as a type of mathematical 

organization (MO), where a punctual MO consists of a type of task 𝑇𝑇𝑖𝑖 and the corresponding 

technique 𝜏𝜏𝑖𝑖 (Bosch & Gascón, 2006). When a set of punctual MOs is explained by using the 

same technological discourse, they construct a local MO (LMO) characterized by its technology. 

Likewise, LMOs with the same theoretical discourse can give rise to regional MOs (RMO). In 
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this organization, it is important to be aware the punctual MOs can be integrated into different 

LMOs, and similar LMOs can be integrated into different RMOs (Barbe et al., 2005).  

2.3 Praxeological change 

In the early years of school, students are trained to follow the rules of arithmetic by calculating 

one arithmetic expression to get another that is equal to it, given the result in canonical form.  

The expression 3 + 5 = 8 can be read, if you do the calculation 3 + 5 correctly – then you will 

get 8. In other words, = is read from left to right as “makes”. The concept of equivalence is 

symmetric and means “same value”, and in algebra it is used about both isolated expression and 

entire equations. For instance, 3 + 𝑥𝑥 and 𝑥𝑥 + 3 are equivalent (or equal) expressions, because 

they are equal for any value of the variable 𝑥𝑥. Similarly, 3 + 𝑥𝑥 = 8 and 𝑥𝑥 = 5 are equivalent 

because they are true for exactly the same values of the variable 𝑥𝑥.  In these cases, the equals 

sign does not mean “makes” or “something needs to be done.” In the transition from arithmetic 

to algebra and particular when introducing algebraic expressions and working with equations, it 

is necessary to understand the equal sign as a symbol for equivalence, and the notion of 

equivalent equations (Kieran, 1981). Thus, the learning of algebra requires the learner not only to 

learn new knowledge, but also to unlearn or reorganize existing knowledge (Brousseau, 1990).  

 The change from understanding the equals sign as an operator symbol to a symbol of 

equivalence requires a change in practice and theory. The notion of praxeological change can be 

used in order to describe such transitions in terms of praxeologies (Putra, 2019): it can mean that 

existing praxeologies need to be modified or rejected in favor of new ones. The use of 

praxeologies allows us to describe what is sometimes referred to as “conceptual change” with a 

very high degree of precision. A praxeological change must be expected to be harder to 

effectuate within a group of learners than the simple addition of new praxeological elements.  

 We now turn to outline the notions of ATD which are used to describe the essential 

moments in teaching-learning processes, with explicit reference to the parts of the taught and 

learnt praxeologies. 

2.4 Didactic moments 

Just like we defined mathematical organizations, a didactic organization consist of task types, 

techniques, technology and theory, where the tasks relate to teaching a given mathematical 

praxeology (Chevallard & Bosch, 2020). More precisely the didactic tasks relate to organize 

particular moments at which specific parts of the mathematical praxeology can be developed by 
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the learner. There are six such moments and they are called didactic moments or moments of 

study (Barbe et al., 2005). The first moment of study is the moment of the first encounter with a 

type of task 𝑇𝑇. The second moment concerns the exploration of the type of task 𝑇𝑇 with the 

emergence of a first technique 𝜏𝜏 used to solve 𝑇𝑇. In the third moment the construction (or 

identification) of the technological and theoretical block [𝜃𝜃/𝛩𝛩] used to explain and justify 𝜏𝜏, and 

is closely interrelated to each of the other moments (Chevallard & Bosch, 2020). The fourth 

moment concerns the technical work and is the moment to work on routinizing and refining the 

technique(s). Institutionalization of the entire praxeology produced [𝑇𝑇, 𝜏𝜏, 𝜃𝜃,𝛩𝛩] is the aim of the 

fifth moment. The sixth and final moment is the moment to evaluate the praxeology and is linked 

to the moment of institutionalization (Chevallard, 1999; Barbe et al., 2005). A “complete” 

realization of the six moments of the didactic process will create a mathematical organization 

(MO) that goes beyond the simple solution of a single mathematical task.  

2.5 Epistemological reference model for elementary algebra 

The construction of epistemological reference models (REM) is a central tool in ATD, and these 

models are formulated in terms of praxeologies (García et al., 2006). A REM is constructed by 

theoretical and empirical data from scholarly knowledge, knowledge to be taught and knowledge 

taught and learnt, even erroneous parts of these, depending on the purpose of the model (Ruiz-

Munzón et al., 2013). The construction of an REM for elementary algebra provides an 

opportunity to reinterpret what is considered as algebra in schools and to examine the role of 

elementary algebra in relation to other domains (Munzón et al. 2015). In that way the REM has 

the function of a working hypothesis for the researcher and provides opportunities to compare 

and include different praxeologies related to school algebra (Bosch, 2015).  

 When we describe the dominant way of teaching or otherwise approaching a mathematical 

praxeology within an institution, we do so using the categories of REM to show how it includes 

some elements of the praxeology and its uses and exclude others. This more or less reduced 

mathematical praxeology is called the dominant epistemological model (DEM) (Lucas et al., 

2019). To establish the precise elements of the DEM, we base our analysis on empirical data 

such as official objectives, textbook material and written exams. Overall, the DEM is a two-

edged sword: it can create cohesion within the school institution, but also contribute to overly 

reduce the praxeology to be taught. It lies in the qualification “dominant” that the DEM has a 

large degree of stability and is rarely or never questioned from within the institution. For that 

reason, it is essential for the researcher not simply to adopt the DEM as REM. 
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3 Literature background 

To investigate the tentative hypothesis that the transition from arithmetic to algebra, which is a 

well-known challenge for teachers and students in Danish comprehensive schools (cf. section 

1.1), can be facilitated at least to some extent by the use of textbook resources from highly 

successful school institutions (in the sense of ATD), we need to draw on several different parts 

of the research literature. This involves, besides related research within ATD, also research in 

other paradigms concerning curriculum resources and textbook materials, as well as the teaching 

and learning of algebra in schools. To navigate this intersection of broad research areas that 

draw on different research traditions the literature review will focus on the three intersections: 

between ATD and school algebra, ATD and textbooks as curriculum resources, and school 

algebra and textbooks, as illustrated in Figure 4. 

The joint intersection between the three areas of ATD, school algebra and textbooks as 

curriculum resources is naturally of particular interest.  

 

 

Figure 4: Model of the intersection of the research areas 

 

3.1 Methodology 

To collect data for the literature review, I chose to use Google Scholar as this search engine 

provides access to a wide range of sources in didactics, without including a lot of teaching 

materials. Unlike databases such as Education Resources Information Center (ERIC), Google 

Scholar indexes scholarly articles, books and dissertations.  Google scholar includes not only 

peer-reviewed articles, but also what might be called grey literature, such as reports on 

Curricula/ 
resources/text-

books 

ATD
School 
algebra
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development projects, ministerial committee work etc. This search engine therefore covers a 

broader range of texts on a given topic, which may be relevant to an institutional analysis. Other 

advantages include the fact that Google Scholar is freely available (potentially increasing 

transparency) and that you can use advanced search strings for instance to find item that cite a 

given source. The broad search results one gets with Google scholar also represents a challenge 

in using the database, as it is not as specialized as ERIC. Another advantage of ERIC is the 

transparency resulting from the explicit description of keywords used for cataloguing, and what 

journals and peer review resources are used for the search.   

For pragmatic reasons, only English keywords will be used, so that primarily English language 

articles will be found and read. When articles are written in a language other than English, I have 

applied a machine translation using Deepl, being aware that nuances and technical terms may be 

lost or degraded in the translation. The use of translated articles has been made because parts of 

the first and important research in ATD and on school algebra has not been published in English; 

one important example is the paper Le passage de l’arithmétique à l’algèbrique dans 

l’enseignement des mathématiques au collège (Chevallard, 1989), as we shall see.  

3.2 Method 1: search by keyword 

To carry out a systematic search the use of keywords is essential. The search string and 

associated result will be documented in a table, followed by a description of exclusion and 

inclusion criteria. Following a review of the title and abstract, the articles will be grouped 

according to their thematic content.  

 Systematic literature searches can provide an overview of a research field; however, any 

search will its limitations. For instance, key articles may not be identified in the search results if 

the search terms do not appear in the article. In fact, almost any search method risks bypassing 

relevant results. The example of the paper by Chevallard (1989) mentioned above illustrates this 

in a striking way: it provides a central contribution to research on the transition from arithmetic 

to algebra, carried out in the context of French collège (middle school, students aged 10 to 15). 

The paper outlines an important development of algebra in that institution and contributes 

theoretical ideas that are relevant beyond this context. However, the article was published in 

Petit x, a practitioner oriented journal which aims to promote the dissemination of research and 

development in mathematics and mathematics education (Petit, 2024) and is an example of an 

article that will not appear when searching on “ATD and algebra” in ERIC, or for that matter in 
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the Google Scholar search with the search string “+ATD +algebra +school +”lower secondary””. 

We captured this paper by the use of another method, targeted citation search (see section 3.3).  

3.2.1 The first keyword search for ATD and school algebra. 

The first keyword search is based on the intersection between ATD and school algebra. ATD and 

algebra as domain are closely related research fields, as evidenced by more than 8600 results at 

the first Google Scholar search, table 1. Narrowing the institutional conditions by adding “lower 

secondary” and excluding “high school” provides a body of literature emerges that form the 

basis for further analysis.  

Table 1. Overview of keyword used and results for the ATD and school algebra search  

 Search string in Google Scholar  Results 

1 +ATD + algebra 8690 

2 +ATD + algebra +school 3510 

3 +ATD +algebra +school +”lower secondary”  240 

4 +ATD +algebra +school +”lower secondary” –“high school” 128 

 

Due to the specific goals of this thesis, we chose to further reduce this initial body of 128 items 

by manually removing texts about teacher training, teaching at university level, papers focusing 

on geometry and digital resources, and papers on study a research path (SRP) design. The 

remaining texts can be placed within the following four categories:  Dialogue between theories, 

Institutional transitions, Praxeological and epistemological analysis of school algebra, Teacher 

knowledge and practice including teaching experiments, all related to lower secondary algebra. 

The category “Dialogue between theories” is excluded here, as this study uses ATD and does 

not focus on abstract relations between research paradigms. In the category of institutional 

transitions, we furthermore excluded articles whose primary focus was on the transition from 

primary to secondary or from lower secondary to upper secondary school. The reason for this 

last elimination is that we are primarily interested in the teaching within lower secondary school 

(although with the adaptation of textbook material from another, foreign, institution at the same 

level, but this is very different from what is treated in the excluded papers). 
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3.2.2 The second keyword search for textbooks and algebra 

The second search clearly shows how much literature there is in the field of “algebra and 

textbooks”, table 2. By adding “lower secondary” and excluding “high school” and “upper 

secondary” the institutional setting is narrowed.  

Table 2. Overview of keyword used and results for the textbook and school algebra search  

 Search string in Google Scholar Results 

1 +textbook +algebra 253000 

2 +textbook +algebra +school 137000 

3 +textbook +algebra +school +”lower secondary”                          2940 

4 +textbook +algebra +school +”lower secondary” –“high 

school” –“upper secondary”                  

826 

5 +textbook +algebra +school +”lower secondary” –“high 

school –“Upper secondary” -electronic -digital 

393 

6 +textbook +algebra +school +”lower secondary” –“high 

school –“Upper secondary”  -electronic -digital -geometry 

101 

 

Exclusion by the keywords “electronic” and “digital” removes articles that discuss the use of 

digital textbooks and the use of Computer Algebra Systems (CAS). As we are particularly 

interested in the transition from arithmetic to algebra, articles with geometry as a keyword are 

excluded. This exclusion also includes articles with a primary focus on interaction between 

geometry and algebra.  

The remaining articles from the second keyword search leads to defining additional categories:  

• Students’ positions and backgrounds, including articles on ethnic and cultural backgrounds, 

high and low achievers, gender research, and beliefs about algebra as a domain and 

mathematics as a discipline.  

• Algebra as a modelling tool in other disciplines, with a primary focus on teaching other 

disciplines, particularly science.  

• Generic teaching methods such as cooperative learning and flipped classroom. 

• The subject- and theme-specific papers, which include studies on fractions, linear equations, 

inequalities, quadratic equations and logarithms in the transition from arithmetic to algebra. 

• Theoretical dimensions of algebraic thinking in schools, including algebraic reasoning, 

functional reasoning, analytical and structural reasoning.  
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• The role of mathematics textbooks, including how teachers and students use textbooks and 

comparative studies of textbooks. 

Texts in the first three categories were excluded as they appeared less or not relevant to our 

project.  

3.2.3 The third keyword search for ATD and textbooks 

The third keywords search aims to find research carried out within ATD, and that examine the 

knowledge to be taught based on the textbook and how the knowledge to be taught is transposed 

to taught knowledge based on the textbook.  

Table 3. Overview of keyword used and results for the ATD and textbook search  

 Search string in Google Scholar Results 

1 +ATD +textbook  11100 

2 +ATD +textbook +mathematics  2380 

3 +ATD +textbook +mathematics +school  2030 

4 +ATD +textbook +mathematics +school +"lower secondary"  230 

5 +ATD +textbook +mathematics +school +"lower secondary"  -

"high school" 

103 

 

This third search also excludes articles in geometry and statistics and the use of digital resources. 

The remaining articles can be grouped into the following categories: Lesson comparison and 

lesson studies, problem solving and inquiry-based learning, SRP and questioning the world, 

praxeological analysis. Only the last category was retained. It includes comparative studies 

focusing on both mathematical praxeology and didactic praxeology.  

3.3 Method 2: Targeted citation search 

In order to address the limitations of a keyword-based literature search, a targeted citation search 

was employed to supplement the search results by keyword. Citation tracking is an umbrella 

term for several different methods, all of which collect related articles from “seed-references”.  

Using citation relationships, it is possible to find additional qualified studies by either 

“backward” of “forward” tracking (Hirt et al., 2023). In this way, citation tracking enables the 

monitoring of the evolution of a research domain by focusing on highly cited and therefore 

influential articles. In this citation search we will use forward tracking with selected “seed-
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references” in ATD and paradigms on curriculum resources and textbook materials, and teaching 

and learning algebra in schools.  

 Within each of the three intersections, ATD and school algebra, school algebra and 

curriculum resources, ATD and curriculum resources (figure 4) three “seed-references” were 

selected for “forward” tracking. The criteria for “seed-references” were that they must be more 

than 20 years old, have been cited more than 300 times. Selecting articles that are more than 20 

years old as “seed-references” can help to monitor subsequent research and how fundamental 

ideas and concepts have evolved over time. Having been cited more than 300 times indicate, in a 

rough way, that the text is considered useful and valuable. The high number of citations suggests 

that the research has influenced subsequent studies and still relevant.  

 From the more than 300 articles citing each “seed-reference”, the most cited articles and 

new articles related to the basic themes of this thesis were selected for the literature review. The 

articles identified through the targeted citation search will contribute to the existing thematic 

categorization identified through the keywork search.  

3.3.1 First seed-reference in ATD and school algebra. 

The article “Le passage de l’arithmétique à l’algèbrique dans l’enseignement des mathématiques 

au collège” by Chevallard (1989) was identified as “seed-reference” for the targeted citation 

search in the field of ATD.  The article, which has been cited more than 340 times according to 

Google scholar, was published in 1989 and can be placed in the early works in ATD and school 

algebra. The author is the founder of the Anthropological Theory of the Didactic (ATD) as a 

research framework and has later written extensively on school algebra. 

3.3.2 Second seed-reference in school algebra and curriculum resources 

I the field of algebra in schools, several researchers have contributed to the development of 

theory over the last 20 years (cf. section 5.4). Carolyn Kieran has been engaging in research on 

school algebra since 1980s, during which time she has conducted comprehensive literature 

reviews (Kieran, 2007; 2022). These reviews represent a significant contribution to the field, 

providing a detailed overview of the evolution of school algebra. As “seed-reference” in the 

intersection of algebra in schools and curriculum resources, we will use Kieran’s article 

“Algebraic thinking in the Early Grades: What Is It?” published in 2004 and cited over 800 times 

according to Google scholar. Kieran (2004) examines how different curricula defines algebra and 

algebraic thinking. By comparing curricula from China, Singapore, Korea and the United States, 

she outlines commonalities such as focus on generalization, problem solving and modelling. 
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These commonalities form the basis of Kieran’s model of school algebra in terms of activities, 

which consist of generational-, transformational- and global meta-level activities (Kieran, 1996). 

The three-part model of algebraic activities includes implicitly the letter-symbolic representation. 

In global meta-level mathematical activities, algebra is used as a modelling tool to model more 

general mathematical processes and activity (Kieran 2004). In this “seed-reference” paper, 

Kieran offers a definition of algebraic thinking in the early years, based on the global meta-level 

activity of algebra, and thus form the starting point for the “forward” citation search.  

3.3.3 Third seed-reference in curriculum resources and ATD 

In the article “Twenty-Five Years of the Didactic Transposition” Bosch and Gascón describe the 

development of ATD from the first summer school in “Didactic of Mathematics” in 1980 to 

2005, where the historical view of ATD is presented. As described in (cf. section 1.2), the notion 

of didactic transposition formed the basis for the later development of the theory. A development 

that in the early years was mainly driven by the French-speaking research community, and very 

soon also by the Spanish-speaking community. Two of the key researchers who have contributed 

to the development of ATD through research contributions in English are Marianna Bosch and 

Josep Gascón. The above-mentioned article has been cited more the 300 times and fulfils the 

citation criterion for “seed-references”. In their early research, both Bosch and Gascón worked 

with elementary algebra, where algebra is viewed not only as a mathematical organization, like 

arithmetic and geometry, but as a process that affect either an entire mathematical organization 

(Bolea et al., 2001).  

3.4 Literature review related to School algebra 

The literature identifies different principal ways to introduce algebra in school: as a theoretical 

generalization of the study of arithmetic and numbers, as a new sector motivated by needs for the 

study of functions, and as a tool for modelling. The approaches and their qualities are still a 

theme of many current papers.  

 In 2012, Bosch and Chevallard express that it is unclear what is meant by “Elementary 

algebra” in mathematics education and schools, and more broadly in society, and it is difficult to 

find work in educational research that examines what is taught under the heading of “elementary 

algebra” (Munzón et al., 2015). In response to the lack of overview of empirical studies on 

school algebra, Eriksson (2022) presents a comprehensive literature review. Teaching students 

aged five to twelve can be broadly organized within three traditions: arithmetic thinking 



23 

 

traditions developing arithmetic thinking first, developing arithmetic and algebra at the same 

time or algebraic thinking tradition developing algebraic thinking first (Eriksson, 2022). That 

view of the field of research on early and elementary algebra is reinforced by a further literature 

review, in which Kieran (2022) describes theoretical dimensions of early algebraic thinking and 

excerpts from empirical findings.   

3.4.1 Theoretical dimensions of algebraic thinking 

Generalization is the common thread running through Kieran’s three overarching types of 

algebraic thinking, namely analytic thinking, structural thinking and functional thinking (Kieran, 

2022).  

 Analytical thinking is what distinguishes algebraic thinking from arithmetic thinking 

according to Radford (2014). When indeterminate quantities such as unknowns and variables are 

treated analytically by considering them as if they were known quantities, and thus performing 

calculations as one would with known quantities, this can be defined as algebraic thinking 

according to Radford (2018). For Radford, the use of explicit algebraic notation is not necessary 

for algebraic thinking, since the description and labelling of indeterminate quantities can be done 

using natural language, gesture and unconventional signs (Kieran, 2022). Radford uses the 

concept of analyticity as part of the analytic dimension of early algebraic thinking, which relates 

in particular to the activity of patterning (Radford, 2018).  

 Structural thinking focuses on relationship and properties (Kieran, 2022). In the tradition 

that Eriksson describes as algebraic thinking first, students are introduced in the early years of 

schooling to relationships between sets that also contain letter symbols (Eriksson, 2022). Kaput 

(2008) has described another aspect of structural thinking that relates to the generalized 

arithmetic view of algebra. In this type of structural thinking there is a focus on numerical 

aspects, with reasoning about general structures, as the generalization of arithmetic operations 

and their properties.  

According to Kaput (2008), algebraic reasoning includes functional thinking, where functional 

thinking is used to generalize relationships between co-varying quantities. Functional thinking 

enables you to analyze functional expressions through different representations, to describe 

deviations from a given pattern or rule (Kieran, 2022).  

 The above only provides a very coarse theoretical overview of the many dimensions of 

early algebraic thinking identified by the references, without including examples of empirical 

studies linked to analytic, structural and functional thinking. While the literature review by 
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Kieran (2022) outlines theoretical and empirical dimensions of algebraic thinking, Kaas (2019) 

attempts through a literature review to categorize the approaches to early algebra teaching 

(algebra in primary school) that have been proposed in the research literature. This 

categorization is divided into activities and topics, where generalizing relationships and 

properties and reasoning with unknown quantities are the activity type. Here, arithmetic and 

numbers, arithmetic and quantities and functional relationships are considered different 

approaches to the subject area (Kaas, 2019). 

 The above theoretical approaches to school algebra provide a picture of the diversity of 

early algebra, which Kieran describes as a multidimensional field including three main 

dimensions of algebraic thinking, analytic thinking, structural thinking and functional thinking 

(Kieran, 2022). Despite these many studies of algebraic thinking, Hodgen et al. (2018) still 

considers that there is missing research in many of the fundamental questions about teaching and 

learning elementary algebra. The authors provide both a description of algebraic thinking and a 

critical look at the research field, as well as perspectives on new directions (Hodgen et al., 2018). 

The authors further argue that the theoretical frameworks used in algebraic thinking research can 

be categorized into three groups (1) Conceptual frameworks, namely skeletal structures of 

justification, rather than structures of explanation based in a formal theory, (2) General theories 

of teaching and learning, used to study school algebra, (3) Holistic theories are frameworks that 

encompass a methodology for instructional design (Hodgen et al., 2018 p. 35). The first category 

thus contains the theoretical approaches described above, where Kaas (2019) finds structures in 

the content approach and Kieran (2022) in algebraic thinking as a research field. As examples of 

general theories belonging to the second category, Hodgen et al. presents, among others, the 

semiotic theory and the cognitive theory of instrument use (Hodgen et al., 2018). ATD as a 

theoretical framework for the study of elementary algebra can be placed in the third category, as 

will be described in more detail below.  

 Based on the theoretical review, Hodgen et al. ask two key questions: How do the 

theoretical frameworks relate to research problems in algebra teaching and learning, and to what 

extent are the theoretical approaches complementary or contradictory?  

On one hand, there is historically different approaches to early algebra (Eriksson, 2022) and a 

diverse theoretical description of algebra in school (Kieran, 2007; 2022). On the other hand, and 

despite these theoretical variations, empirical data describes a more uniform current practice 

where school algebra in the Western world appears to be dominated by a narrow focus on 

training isolated techniques related to notation and formulas, with a widespread neglect of 
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present algebra as a modelling tool (Herscovics & Linchevski, 1994; Strømskag & Chevallard, 

2022). Algebra as a modelling tool has been central to the work of Chevallard (1989) and 

modelling problems with algebra, and recognizing and evaluating algebraic models is also more 

broadly considered fundamental to algebra learning (Jupri & Drijvers, 2016). 

3.5 Literature review related to ATD and school algebra 

ATD as a research program has evolved since the presentation of didactic transposition and the 

introduction of the notion of praxeologies by Chevallard (1999). In the “seed-reference” by 

Chevallard (1989), the theory of didactic transposition is used as theoretical foundation to 

describe the transition from arithmetic to algebra in college mathematics education in France. 

An analysis of the manipulation of algebraic expressions in college reveals that it has the sole 

purpose of training certain algebraic tricks and has no mathematical goal beyond this training. 

The “rules” of this manipulation are unmotivated, learnt and expressed by instructions, which 

also have a standardized form (Chevallard, 1989). Munzón et al. (2015) present a global 

synthesis of the contributions made by ATD to the problem of teaching elementary algebra. As 

described above, there are many theoretical approaches to elementary algebra. Despite this 

diverse and widespread research on elementary algebra, Munzón et al. (2015) call for work in 

educational research that examines what is understood by elementary algebra and actually taught 

as elementary algebra in mathematics education. What praxis and logos constitute the taught 

knowledge of elementary algebra and not least, what knowledge and activities are not taught in 

schools (Munzón et al., 2015). In Spanish schools, the same situation described by Chevallard 

(1989) can be found in the teaching and learning of elementary algebra, where students learn to 

write, factorize and simplify expressions as an end itself and not as a tool for problem solving 

(Cosan, in press; Munzón et al., 2015). 

3.5.1 Praxeological and epistemological analysis of school algebra 

The teaching of mathematics in schools, and in this context school algebra, can be put in further 

perspective through the study of older mathematic textbooks. The epistemological study of the 

concept of formula and its development by Strømskag and Chevallard (2022) is based on a 

historical analysis of curriculum and textbook development, where they conclude that the 

curriculum is both evidence and cause of the disappearance in schools of algebra as a modelling 

tool (Strømskag & Chevallard, 2022).  
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In ATD, the focus in schools on algebra as a modelling tool was previously advocated by 

Chevallard (1998), Bolea et al. (1998; 2001; 2004) and Ruiz-Munzón et al. (2013; 2015; 2020). 

Algebra as a modelling tool includes models of intra-mathematical systems like calculations 

patterns, and of extra-mathematical systems, like the study of quantitative relations in other 

disciplines, e.g. economy, physics and biology (Bolea et al, 2001). In this way, algebra does not 

appear as a mathematical organization at the same level as the other organizations (e.g. 

arithmetic, geometry), but as a modelling tool for all mathematical organizations in the school 

(Bolea et al, 2001; Bosch, 2015).  

3.5.2 Levels of the algebraization process 

Algebraic modelling occurs through an algebraization-process that begins in primary school and 

continues through secondary education to university level. In ATD, the characterization of 

“algebraized” mathematical activity and the “degree of algebraization” are of particular interest 

(Ruiz-Munzón et al., 2013). To detect and analyze general levels in the school algebra to be 

taught and locate which aspects of the algebraization process are weak or difficult to introduce in 

schools, a three-stage model of the algebraization process can be used (Bosch, 2015). In the 

three-stage model of algebraization defined by Ruiz-Munzón et al. (2013), arithmetic can be 

identified as the domain of calculation programs (CP). The first stage of algebraization occurs as 

learners consider the CP as a whole and not only as a process. In the second stage, letters are 

introduced as parameters and unknowns, to model the relationship between CPs. The third and 

last stage of the algebraization process appears when the number of variables of the CP is not 

limited to one, and the distinction between unknowns and parameters is eliminated (Ruiz-

Munzón et al., 2013). Munzón et al. (2015) uses the three-stage model of algebraization as a 

reference system to analyze how elementary algebra is presented in the Spanish lower secondary 

algebra. 

3.6 Literature review related to Curriculum resources  

Curriculum theorists use categories to analyze different types of curricula and to clarify their 

meaning. In a very general description, the “formal curriculum” refers to the objectives and 

activities outlined in school policies or described in textbooks. The “Intended curriculum” 

represents teachers’ goals, while the “enacted” of “experienced” curriculum is what actually 

happens in the classroom (Remillard, 2005). Researchers mostly focus on the enacted 

curriculum, emphasizing the active role of teachers in its design – in brief, the internal didacticc 
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transposition. Understanding the relationship between the written and the “lived” curriculum 

involves exploring how teachers construct the lived curriculum and the role of resources such as 

textbook material in this process (Remillard, 2005) 

 Curriculum resources include traditional curriculum materials such as textbooks and 

official curriculum guidelines, but also include teaching guides, students’ notebooks, electronic 

tools and online materials. This diversity of resources appears to be increasingly influencing 

curriculum materials, curriculum development, teacher training and everyday classroom practice. 

In line with Pepin and Guedet (2018), Remillard (2018) and Rezat et al. (2021), we will 

occasionally use the term “curriculum resources” to include textbooks as well as the variety of 

printed or digital materials that were designed to support teachers’, all elements that comprise the 

body of the “knowledge to be taught” in the transposition process. The term “curriculum” is used 

when a resource pays particular attention to the sequence of learning topics at the grade or age 

level, or to the content associated with a particular domain in school education.  

 Through a literature review, Rezat et al. (2021) identified three objectives for change 

through curriculum resources. First, curriculum resources can be used as instrument to change 

the goals of mathematics education and thus the mathematical content taught. Secondly, 

curriculum resources can be designed to implement change in mathematics teaching, and finally, 

curriculum resources define mathematics as a school subject, so renewal of the first imply 

renewal of the profile of the subject. Thus, curriculum resources are a tool to improve student’s 

knowledge, but they can also help to change students’ beliefs and attitudes towards mathematics 

(Rezat et al., 2021).  

 Although the perception of materials for teaching algebra has changed over time with the 

inclusion of new types of resources such as CAS (Computer Algebra Systems) and dynamic 

geometry programs, the textbook is still considered the most important resource for teachers 

(Straesser, 2011). The use of the term “curriculum resources” rather than “curriculum material” 

is an attempt to broaden the perspective on the elements available for the teachers’ work to 

include also other resources that define the knowledge to be taught.   

There has been a significant theoretical development to describe the use of curriculum resources 

in mathematics education. Researchers have reached a consensus that the utilization of a 

curriculum resource is not a direct implementation but involves an interaction between the 

teacher and the resource (Remillard, 2012). Using mathematics curriculum text designed to 

guide teachers in planning daily lessons, Remillard (2012) explores and theorizes the 

relationships teachers develop with curriculum resources.  
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3.6.1 The textbook as a resource 

A literature review by Fan et al. (2013) highlights the widely recognized importance of textbooks 

in teaching and learning. It is noted that textbooks are powerful resources for mathematical 

education because they can introduce readers to unfamiliar concepts, provide a structure for the 

teaching and learning of mathematics and provide access to mathematical knowledge (Fan et al., 

2013). To classify the literature in mathematics textbook research, Fan et al. (2013) used the four 

categories: textbook use, analysis and comparison of textbooks, the role of textbooks, and other 

areas of research (Fan et al., 2013). The use of mathematics textbooks in the United States has 

until the publication of the NCTM Standards in 1989, the primary focus of mathematics 

textbooks in the United States was on student exercises and practice problems. However, 

because the standards address both the types of mathematical problems students should solve and 

the way in which these problems should be taught, more attention was paid to pedagogical 

guidance for the teacher (Remillard, 2012). Research showed that teachers find it challenging to 

use the so-called standards-based teaching materials (which were new at the time of the study) 

and that many teachers use the materials in ways other than those intended by the designers 

(Remillard, 2012). 

 Studies of teachers’ use of textbooks in different countries show that mathematics 

textbooks are used by teachers in two dominant ways. One is as guide to mathematical content 

and as a source for mathematical tasks. The other is as a guide to approaches to teaching and 

how content should be presented (Rezat, 2012). 

A study by Rezat (2012) examines four teachers’ explicit references to the textbook. The ways in 

which the teachers refer explicitly to the textbook can be characterized along three dimensions; 

directly or indirectly, specific and general, voluntary or obligatory (Rezat, 2012). When the 

teacher talks about the textbook, the students’ attention is drawn directly to the book. However, 

students can also be influenced indirectly by the mere use of the teacher of a textbook. The 

teacher can refer to specific sections, examples or tasks in the book, or more generally to the 

textbook as a place where students can find answers to their questions. Teachers may also 

explicitly refer to students’ optional use of the book if they require assistance, and therefore does 

not require them to use the book if they do not need such assistance. Conversely, students may 

be required to utilize the book due to the necessity of working with the assignments contained 

therein (Rezat, 2012). Whether it is a directly or indirectly use of the textbook Howson (2013) 

argues, that good textbooks are more important for good math results in schools, rather than 

other factors such as new IT equipment or nice classrooms.  
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 Despite the consensus that textbook are of importance for the teaching of mathematics, 

many teachers and textbook writers are unaware of the cognitive difficulties in the learning of 

mathematics and especially school algebra. This can result in students not having the time to 

build on the pre-algebraic foundation they have developed in primary school, not understanding 

the meaning of the new symbolism and carrying out meaningless operations and reduction of 

symbol strings they do not associate with any meaning (Herscovics & Linchevski, 1994). 

Although textbooks and curriculum resources have a significant impact, they cannot transform 

teaching and learning practice on their own, and more knowledge is needed about the 

characteristics of curriculum resources that support the implementation of change (Rezat et al., 

2021).  

3.6.2 Curriculum structure 

The objectives, aims and content of a curriculum are central to the knowledge to be taught, but 

the overall structure and organization of the curriculum content is also important.  One way of 

organizing the curriculum is through a tiered structure, where content areas build on previous 

areas with a clear progression. This is a traditional curriculum structure, where subject areas 

have their own goals and elements of assessment. A structured approach to curriculum design, 

where content is organized in a step-by-step, sequential progression. I this linear structure, 

mathematics subject areas are introduced in a structured sequence, that builds on prior 

knowledge and has a clear emphasis on progression. In contrast to the linear curriculum 

structure, which employs a step-by-step approach to knowledge acquisition, the spiral curriculum 

is based on a more iterative process. 

 A spiral curriculum is based on the overall objectives or goal of the curriculum, where the 

content is an iterative review of topics, subjects or themes throughout the program. The features 

of a spiral curriculum are that topics are revisited, there are increasing levels of difficulty, new 

learning is related to previous learning, and students’ competences increase with each visit until 

the final overall objectives are achieved (Harder & Stamper, 1999). The value of a spiral 

curriculum lies in the following six key aspects according to (Harder & Stamper, 1999): 

Reinforcement, where topics are revisited, which helps students retain and deepen their 

understanding over time and solves the common problem of forgetting previously learnt 

knowledge. Progressions from simple to complex, where the students are introduced to concepts 

at a manageable level and gradually build on previous knowledge, increasing understanding. 

Integration, where the spiral approach breaks down traditional boundaries between MO. Logical 
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sequence, where the spiral curriculum provides a structured flow that helps students navigate the 

complexity of mathematics as subject. Higher-level objectives, where the emphasis is on 

applying knowledge and skills rather than simply memorizing facts. Flexibility, where the 

curriculum allows for flexibility so that students can progress to more advanced stages if they 

have mastered previous content. The official Danish curriculum “Common Objectives” (CO) is a 

competence-based curriculum with a spiral structure. On the other hand, the Japanese curriculum 

has a more linear and step-by-step structure with a steady but slow progression (Paper II).  

 Despite the very different curriculum structure, the overall objectives of mathematics in 

Danish and Japanese schools are quite similar. The Japanese School Education law state in 

paragraph two that “… school education should be committed to enhancing its instruction to 

enable pupils, to solidly acquire basic and fundamental knowledge and skills, to foster the ability 

to think, to make decisions, to express themselves in ways that are necessary to solve problems 

by using acquired knowledge and skills, and to cultivate an attitude of proactive learning 

(Nakayasy, 2016). This is similar to the general descriptions of the purpose of mathematics in 

Danish schools (cf. section 1.4). Thus, the overall aims of the mathematical education in the 

Danish and Japanese schools align, while the detailed program propose different ways to reach 

the aim. Although the overall educational goals are aligned, analyses of the specific subject areas 

(e.g. the transition from arithmetic to algebra), reveal different approaches in terms of textbook 

content and didactic principles (Paper II).  

3.6.3 Subject- and themes related to the transition from arithmetic to algebra.  

There is a long tradition of analyzing and comparing textbooks within and between education 

systems (Sayers, et al., 2019). A study by Ding (2016) aims to create better conditions for 

students to learn inverse relations and argues for the potential of using Chinese textbooks in the 

United States. In a comparison of Chinese and American textbooks, they examine how items of 

the task type 𝑇𝑇: 𝑎𝑎 + 𝑥𝑥 = 𝑏𝑏, where 𝑎𝑎, 𝑏𝑏 ∈ 𝑁𝑁 with the corresponding technique 𝜏𝜏: filling in the 

missing number using inverse relations, e.g. solving 8 + ( ) = 14 by thinking 14 − 8 is 

represented by the parenthesis (Ding, 2016). The main difference between the Chinese and 

American textbook system from Grade 1 to 6 was that in Chinese textbooks, learning is 

structured over time with an emphasis on systematic structural relations, including the inverse 

quantities relationships (Ding, 2016).   

 The context and progression of the distributive property in Chinese and American 

mathematics textbooks is the subject of another comparative study (Ding & Li, 2010). The 
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results based in coding the tasks from textbooks in grade 2 to 6 show that the American 

textbooks are dominated by calculations and less by word-problems. The Chinese textbook begin 

to develop students’ intuitive understanding of the distributive property in Grade 2, while the 

American textbooks do so in Grade3. The crucial difference is that the Chinese text extensively 

discusses the distributive property when it is first formally introduced, whereas only one of the 

American textbooks has such a focus. This is evidenced by the fact that the Chinese 4th grade 

textbook has a specific chapter called “Operational Properties” on distributive property only 

which contains, three lessons with exercises the focus on the distributive property. After the 

formal introduction of the distributive property, there is a progression from students using the 

property with repeated variables and problem solving to extensive use of distributive property in 

grade six, solving equations and using equations to solve word problems. In contrast, both US 

textbooks used distributive property primarily for computation (Ding & Li, 2010).   

3.6.4 Institutional transitions 

Although there is a substantial body of research examining the analysis and comparison of 

mathematics textbooks between countries, there is little evidence on how the use of an imported 

textbook from one cultural context to another affects the didactic traditions of a system (Sayers 

et al., 2019). A Swedish study analyses the opportunities for learning fundamental number sense 

in three first-year textbooks in Sweden, where one of the textbooks is from Swedish and two are 

imported from Finland and Singapore respectively, which are generally recognized as successful 

countries in international studies such as PISA and TIMSS (Sayers et al., 2019). The analyses 

show both similarities and differences between the three textbooks depending in the analytic 

approach chosen. It is therefore emphasized by the authors that it is unwise to uncritically import 

textbook materials from the so-called successful countries if the import “attempts to fix 

something that is not broken” (Sayers et al. 2019, p.521). The article does not address the 

converse idea, namely that it may be appropriate to import textbook material in mathematical 

areas need “to be fixed”. The following studies by Krammer (1985) and Ginsburg et al. (2005) 

investigates IDT from TB to TK (figure 2).  

 Krammer (1985) conceptualized the textbook as a classroom context variable and 

compared the teaching practices of teachers using three different mathematics textbooks in grade 

8 classed in the Netherlands. The study, based on classroom observations, tests, and 

questionnaires, found significant differences in teaching practices. These included variations in 

the frequency of higher-order questions, seatwork, academic conversation, and students' 
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perceptions of remedial help, all closely linked to the features of the textbook they used. 

Krammer (1985) questioned whether the observed consistency between textbook and teaching 

practice was due to teachers following textbook blindly or because the teachers’ selection of 

textbooks followed from their teaching styles. 

 In the exploratory study by Ginsburg et al. (2005) they compare the mathematics education 

systems in Singapore and the US, focusing on primary school, where basic mathematics skills 

are built. The study examines important differences in the institutional frameworks, including 

textbooks, assessments, and teacher qualifications, in the two countries.  

It shows that Singapore's success is due to its coherent system, which includes a coherent 

national framework for education, problem-based textbooks, rigorous assessments and highly 

qualified, mastery-oriented teachers. In contrast, the US system lacks a coherent content focus, 

relies on traditional textbooks that emphasize rote learning, and has fewer challenging 

assessments. In addition, US teachers often lack adequate training in mathematics, and at-risk 

students receive inadequate support. The study also presents pilot results from US schools that 

implemented Singapore's textbooks without reproducing all features of the full educational 

system. Both strengths and weaknesses were observed in piloting the implementation of the 

Singapore mathematics curriculum, in comparison to the traditional mathematics curriculum. 

The strengths were greater depth and less breadth in the curriculum, so that fewer topics were 

covered each year, with an emphasis on mastery level. Mathematics topics were revisited 

throughout the curriculum with higher levels of mathematical content and higher levels of 

mathematical thinking. The textbook material presents concepts clearly using pictures, numbers 

and words and the challenging word problems allowed students to become critical thinkers. 

Finally, algebraic ideas and problems were introduced at an earlier age than in US books. The 

main challenges with the use of Singapore textbook resources were that some of the strategies 

used were new to both students and teachers. There were also language differences, including 

different metric units. Written communication skills were not emphasized and there were not 

enough practical activities in grade 7 and 8. Finally, the Singapore resources did not match the 

state framework, e.g. the probability strand was not covered (Ginsburg et al., 2005). The 

implementation of the Singapore mathematics textbooks produced mixed results across the pilot 

sites. In some cases, particularly in smaller sites with stable enrolments, or in sites with gifted 

students, students showed significant progress. However, the variability in results and the 

concerns expressed by teachers suggest that careful introduction of entire textbooks is necessary 

for their effective use. Unlike US textbooks, the Singapore's curriculum does not repeat content 
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as much, creating challenges for students transferring from schools with different curricula and 

for students who struggle with mathematics (Ginsburg et al., 2005).  

 Many studies of curriculum materials start with the text and look at how closely teachers 

follow or change it. These studies often take a positivist view, assuming that, under ideal 

conditions, a close match between written and enacted curriculum is possible. As a result, 

researchers focus on how curriculum writers can provide clearer guidance to teachers. This focus 

is not surprising, given the widespread use of textbooks and the tendency to see the materials as 

a potential vehicle for change (Remillard, 2005).  

3.7 Literature background summary 

The literature search based on keywords and seed references yielded a large field of relevant 

literature within each of the thematic areas. The above literature review is not exhaustive but 

includes a broad range of articles relevant to the project. However, at the intersection of ATD, 

school algebra and textbooks, there are primarily praxeological and epistemological studies and 

no studies of experimental use of foreign textbooks. Studies comparing mathematics textbooks 

from so-called high-achieving countries such as Singapore, China and Japan with American and 

European textbooks, show that Asian textbooks are characterized by greater depth and less 

breadth, with fewer topics covered each year and an emphasis on mastery and clear progression.  

 Mathematics textbooks from Asian countries are only used with limited success in 

countries with different curriculum structures, according to the sparse and non-systematic 

evidence available. We note that a common feature across the few studies of such use that they 

concern the adoption of entire textbooks rather than selected parts.  

This background literature lays the foundation for testing the hypothesis that foreign, research-

based textbook materials can support students and teachers in the transition from arithmetic to 

algebra in DLS, through the use of selected chapters. By doing so, the project will contribute to 

the intersection of the research fields Figure 4, by exploring the conditions and constraints for 

the selective import of textbook material between institutions.  
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4 Research Questions  

In the original application to the Council of Educational Research, the project title was “The 

Abstraction Gap – transition from arithmetic to algebra”. After having explored the definition of 

school algebra as a modelling tool and literature background on the corresponding research areas 

and in particular the challenges of the transition from arithmetic to algebra, I replaced the idea of 

an abstraction gap by this latter transition. It became clear to me that the transition from 

arithmetic to algebra is difficult but not abrupt like a gap, and that school algebra as a domain is 

intertwined with all other mathematical domains. Instead of the image of a gap to be bridged, it 

is more fruitful to think of school algebra as a modelling tool that is used in all domains of 

mathematics (at least after primary school), and in many domains of disciplines outside 

mathematics, such as physics, biology and economics.  

I order to base my diagnosis and intervention on an adequate picture of what algebraic 

praxeologies are currently taught in DLS and to what extent theoretical elements from arithmetic 

are used or modelled, I began by addressing  

RQ1: What algebraic praxeologies are currently taught in the Danish lower 
secondary school, and to what extent does the teaching offer a systematic 
progression at the level of theory? 

 

My original idea of a “gap” reflects a practitioner’s experience of a sometimes-sharp divide 

between students who appear to have “cracked the code” of algebra and those who have not. 

Indeed, with a detailed model of the algebraic praxeologies at stake, one could begin to 

investigate this in a more precise way, based on empirical data of various origins: 

RQ2: What algebraic techniques are particularly problematic for Danish 
students at early lower secondary level and what theoretical gaps does these 
imply?  

 

The third research question presents a discussion of the findings from research question one and 

two. This is not a separate research question in any of the papers and, in principle, also more of a 

“discussion issue” related to the previous two questions. As it is often the case in journal papers, 

the papers included in this thesis did not have space for a systematic and comprehensive 
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literature review. However, such a review was included as a separate section in this introduction 

(Chap.3), and we took advantage of this to include also a more thorough discussion of how the 

findings from the Danish context relate to the broader range of previous international research 

(Chap. 7). 

RQ3: How does previous international research relate to answers found for 
RQ1 and RQ2? 

 

From the outset of the project, a main goal was to experiment the use of certain textbook 

materials from Singapore or Japan that are based on thorough and broad practice research (cf. 

Miyakawa & Winsløw, 2019; MEXT, 2023). The aim was to investigate the extent to which the 

targeted use of research-based textbook materials can help overcome the current challenges in 

the transition from arithmetic to algebra in DLS:  

RQ4: What effects can be seen in Danish lower secondary school when 
implementing adapted research-based resources from other countries to 
overcome the challenges identified (RQ1, RQ2)?  

 

Some elements of this question could, in retrospect, be nuanced or at least elaborated. It is not 

immediately clear what implementing resources means, in particular, how much support and 

direction is given to the teachers’ appropriation and use of the resource. Any “effects” should be 

understood in terms of differences, which is complicated for two reasons: even when focusing on 

differences in students’ praxeological equipment, any didactic process results in such 

differences, and isolating what is somehow caused by the resource is difficult especially since 

one cannot know what the use of the habitual resource would have produced. In ATD, we would 

rather consider the effects in terms of new constraints and conditions for the didactic process as a 

whole, involving also impact on the teachers’ practice.  

The following chapter outlines the way the research questions posed were addressed further on.  
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5 Methodology  

To respond to the four research questions (Chap. 4) in ATD, a variety of methods and models 

will be used. A praxeological analysis of knowledge to be taught and knowledge taught in DLS 

will be used to answer RQ1: What algebraic praxeologies are currently taught in the DLS, and to 

what extent does the teaching offer a systematic progression at the level of theory.  

5.1 Praxeological analysis to model algebraic praxeologies taught in DLS 

The algebraic knowledge learnt in school is only a part of the internal didactic transposition, and 

it is therefore essential to consider the other elements of the internal didactic transposition of 

school algebra in order to gain a more comprehensive understanding of school algebra in 

Denmark. The construction of an epistemological reference model (REM) for elementary algebra 

in Danish lower secondary school provides an opportunity to investigate and interpret the status 

of school algebra in Danish lower secondary school (Paper I).  

To answer the research question “What algebraic praxeologies are currently taught in the DLS, 

and to what extent does the teaching offer a systematic progression at the level of theory?” We 

will look at the knowledge to be taught by analyzing curriculum resources, common objectives 

(Education, 2019), national written exam after lower secondary school year 2019 (Education, 

2024) and the textbook material KonteXt+ (Thomsen et al., 2015), as illustrated in figure 5.  

 

Figure 5. The empirical data that models the DEM and REM (Paper I) 
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5.1.1 Identifying the Dominant Epistemological Model (DEM) 

The first step in modelling the DEM is to detect the exercises in the curriculum material 

associated that forms the current algebra knowledge to be taught in lower secondary school. The 

second step is to divide the exercises into type of tasks 𝑇𝑇𝑖𝑖 and the corresponding technique 𝜏𝜏𝑖𝑖 and 

describe the current related knowledge block [𝜃𝜃/𝛩𝛩]. As we are particularly interested in 

elementary algebra, instrumented techniques such as using CAS tools and spreadsheets to 

construct and solve equations will not be considered in detail. The empirical data for this first 

step is the national curriculum for DLS “Common core” (CO), written exam after DLS and the 

textbook material KonteXt+ (Johnsen et al. 2005; 2009; Thomsen et al., 2016). The next step in 

modelling the DEM is to obtain empirical data from the knowledge taught (figure 5).  

 In this project, we carried out observations of the teaching of elementary algebra in three 

different schools, for a total of 12 lessons in the January 2022. Here, “the teaching of elementary 

algebra” reflects the teachers’ selection of lessons where algebra was taught according to them; 

there is no guarantee that the lessons were somehow representative, and some of the lessons and 

little or no algebraic content. We used participant observation (Emerson et al., 2001) and field 

notes were recorded during the teaching and combined with transcriptions of the classroom 

dialogue (Paper I). To describe and analyze how a study process construct and reconstructs a 

mathematical organization, we will use the six moments of didactic process as an analytical tool 

to analyze the selected observations (Barbe et al., 2005) (Cf. Chap. 3.4). 

The purpose of these observations was to complement the analysis of textbooks with episodes 

from actual teaching, in view of identifying the DEM (algebraic praxeologies currently taught in 

DLS). The construction of a dominant praxeological model (DEM) is appropriate to describe the 

algebra prevalent in educational institutions. While algebra as a domain poses challenges that 

can be difficult to see and understand when algebraic techniques and theory is internalized and 

institutionalized to such an extent that it can be difficult to see beyond. The dominant model 

constructed through praxeological analysis of current knowledge in institutions, is referred to by 

Gascón (2024) as the current epistemological model (CEM).  

 The analysis will present the syntheses of the DEM in thematic chunks associated with the 

transition from arithmetic to algebra. The aim is to gain insight into the knowledge to be taught 

and the knowledge taught, in order to answer RQ1 and as a baseline for our subsequent 

experiment.  

 To inform the DEM with current knowledge learnt in DLS, a diagnostic paper and pencil 

test was developed and conducted (cf. section 5.2.4). The outcome of the diagnostic test also 
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contributes to answer RQ2: What algebraic techniques are particularly problematic for Danish 

students at early lower secondary level and what theoretical gaps does these imply, we will 

develop a diagnostic test tool.  

5.2 Diagnostic test to diagnose problematic algebraic techniques I DLS  

It is a long-standing and widespread problem that large groups of students seem to get stuck in 

the transition from arithmetic to algebra (Herscovics & Linchevski, 1994). A significant part of 

the didactic research in basic algebra focuses on the difficulties that students encounter when 

they first engage with algebra in lower secondary school (Munzón et al, 2015). To get insight 

into what algebraic techniques are particularly problematic for Danish students in the transition 

from arithmetic to algebra in lower secondary school and what theoretical gaps these imply, we 

developed a diagnostic test inspired by a project on middle school arithmetic (Cosan, 2021).  

5.2.1 Construction of the diagnostic test tool 

The diagnostic test tool is based on the REM. Items designed to test a simple technique are also 

simple to construct (Paper IV). As an example, the item 4 + 5 ∙ 2 =     is the type of tasks 

𝑇𝑇: calculation of arithmetic expressions with multiplication of integers before addition and 

subtraction. The item is designed to display the technique used. There are also variations of type 

of tasks that can be solved using the same technique for a more nuanced picture of the scope of 

the technique used. Example “Show and explain how you calculate 3− 2 + 5 ∙ 2 =   “, where the 

calculations are designed to diagnose the techniques used and by requiring the student to 

“explain”, there is an opportunity to gain access to the logos part of the praxeology.   

 As described in the section on ATD and School algebra (cf. Chap. 3.5), algebraic 

modelling occurs through a process of algebraization that begins in primary school and continues 

through secondary education to university level. In order to diagnose the general level of school 

algebra taught and to identify which aspects of the transition from arithmetic to algebra appear to 

be weak, the diagnostic test will include items on the first stage of the three-stage model of the 

algebraizations process. The first stage of algebraizations occurs when students consider CP as a 

whole ad not just as a process (Ruiz-Munzón et al., 2013; Bosch 2015).  “Show how to calculate 

17 + 29 + 132− 52 + 52 − 29 =     “ and the item 8 + 4 =   + 5 will provide insight into the 

techniques used and to what extent the arithmetic foundations for the algebraization process is 

present. The equations 2𝑥𝑥 = 16 + 2, and 7𝑥𝑥 − 7 = 13 − 3𝑥𝑥 provide insight into the algebraic 

techniques used and the extent of the first level of algebraization (cf. section 3.5.2). 
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5.2.2 Algebraic modelling in the diagnostic test 

As previously described (cf. section 5.4 ) the use of algebra as a modelling tool is a central issue 

in the discussions about the role of school algebra (Chevallard & Strømskag, 2022). The 

diagnostic test includes items that includes algebraic modelling in geometry with the task type 𝑇𝑇: 

determine the perimeter of the polygon, and the task type 𝑇𝑇: determine the area of a polygon 

with all sides being either parallel or orthogonal.  

In addition to gain knowledge of students’ praxis blocks according to arithmetic and algebra, the 

diagnostic test also includes items designed to gauge knowledge of their logos blocks.  

5.2.3 The level of theory in the diagnostic test 

The distributive law is part of the theoretical level of both arithmetic and algebra and is the 

crucial link between addition and multiplication (and field axiom). To diagnose the state of the 

distributive property there are different variations of items with techniques based on the 

distributive law. Examples (2 + 3) ∙ 5 − 1 =   ,  32 + 3 ∙ (7 − 5) =  , 𝑘𝑘(5 + 3) =    , “Explain 

how to calculate (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) =   “.  

In ATD these theory elements are empirical object and contributes to state the level of algebraic 

techniques and theory in Danish lower secondary school.  

5.2.4 Conducting the diagnostic test in DLS 

The diagnostic test was first piloted by 25 grade 7 students (13-14-year-old). Based on the pilot 

test, items that all students answered correctly and items that none of the students answered 

correctly were removed. Some of the items that used techniques for addition and subtracting 

fractions were removed, because the results did not contribute to further knowledge in relation to 

Cosan (2021). The revised diagnostic test was carried out into two different schools, four grade 7 

classes in February 2022 and one grade 8 class in Marts 2022. The tests were conducted after the 

Covid-19 pandemic and not all students were present. The total number of grade 7 students (12-

13-year-old) is 69 and the total number of grade 8 students (13-14-year-old) is 22 students. The 

students had 45 minutes to answer the 67-item paper-and-pencil diagnostic test (Paper I). 

The thorough diagnosis of the current state of school algebra forms the basis for the experiment 

of using foreign textbook in DLS.  
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5.3 The experiment  

We are interested in how school algebra can be changes in a certain direction to address some of 

the challenges stated through the diagnosis. But how and what would be the consequences of 

such a change? To investigate this, we ask RQ4: What effects can be seen in Danish lower 

secondary school when implementing adapted research-based resources from other countries to 

overcome the challenges identified (RQ1, RQ2). In order to conduct such an experiment, it is 

essential to consider a number of methodological and ethical issues.  

 In the process of translating the knowledge to be taught into the knowledge taught, the 

textbook has a role as a mediator, where the form and content of the textbook has consequences 

for the teaching and the knowledge learnt. To explore the extent to which the transition from 

arithmetic to algebra can be strengthened by using textbook resources from another country we 

use the Japanese textbook Junior High School Mathematics:1 (Isoda & Tall, 2019). The basis for 

the selection is that the textbook material comes from Japan, which is one of the top five 

performing countries in Trends in International Mathematics and Science Studies (TIMSS) 2019 

(Mullis et al., 2020). The material is based on systematic empirical research and translated into 

English. The Japanese textbook has an explicit and theory-based approach and includes an 

explicit description of the use of algebraic notation form (Paper II). In order to use the Japanese 

textbook material in DLS, it requires at least a translation to Danish.  

5.3.1 The translation of the textbook material  

There are three levels of considerations when using a foreign textbook, acceptance, adaption and 

appraisal (Howson, 2013). You can choose to accept the textbook material in their full form, 

with the “real” examples included, even though they may be of less relevance or importance to 

the students who will be using the material. Adaption of content, e.g. by changing currencies and 

changing place names or other superficial details. The last level involves an appraisal of the 

materials. At this level, curriculum resources from another country are examined to identify 

potential ideas or strategies that can be incorporated into home-produced texts (Howson, 2013).  

 I this project, we want the translation of the textbook chapter to be as close to full 

acceptance as possible. To ensure that only the most essential elements of the material were 

changes and adapted, the chapter was first taught to one student in its original form. 

Observations from this collaboration meant that the names of the artificial persons in the material 

were changes from the Japanese names Yui and Takumi to Aya and Toke, to move the students 

focus from pronunciation to content. Another small subset of the material was also changed.  
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The sentence “In algebraic expressions, you can remove the multiplication sign ×” which can be 

found in the text box with “How to express product” was modified to “In algebraic expressions, 

you can remove the multiplication sign ×. The multiplication sign can also be written as a dot ∙”. 

Because in Danish textbooks, the dot is mainly used as a multiplication sign. However, the 

multiplication sign × is not unfamiliar to students as it appears on calculators and in older 

textbook material. To make the use of signs explicit, which is one of the hallmarks of the 

material (Paper II), this information on the relationship between the cross and the dot has been 

added.  

 The chapter “Algebraic Expression” is in Japan used in the first part of junior high school, 

when students are 12 years old. To determine when the first encounter with algebraic expression 

should take place in DLS, the CO states that students must “find solutions to simple equations 

using informal methods” and “use simple algebraic expressions for calculations” in grade 6 to 9 

(Education, 2019). As the CO do not specify this further, the timing of the teaching experiment 

was based in conversations with mathematics teachers at the school where the experiment was to 

be conducted. The first two month of grade 8 were chosen as the time to use the Japanese 

textbook chapter “Algebraic Expression” in Junior High School Mathematics:1 (Isoda & Tall, 

2019).  

 To investigate what effects can be seen in Danish lower secondary school when using 

Japanese textbook materials we will use the concept of praxeological change (Putra, 2019) (cf. 

section 2.3). 

5.4 Praxeological change based on observations and teacher interviews 

There are three areas in particular where the Japanese textbook chapter excels. It is the use of a 

broad opening problem that is referred throughout the chapter. The explicit use of algebraic 

notation form and the explicit technical descriptions with theoretical justifications for the 

techniques used (Paper II). Based on these key areas, classroom observations with notes, 

photographs and video recordings are used to select teaching episodes for further analysis. The 

selected teaching episodes will form the basis of the subsequent teacher interviews, which will 

follow the photo elicitation interview method, where transcripts and photographs of the episode 

are used to generate verbal discussion (Nissen et al., 2016). A pre- and post-diagnostic test (cf. 

section 5.2) is used to gain insight into the knowledge learnt.  

 There are ethical issues that need to be considered when conducting experiments in 

general, and especially in school institutions where teachers and students are involved.  
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5.5 Ethical considerations 

In the project, the mathematics teachers voluntarily signed up for the experiment based on an 

information letter sent to the mathematics supervisors in the schools. This letter described the 

aim of the project, how teachers and students were expected to contribute, and what kind of data 

would be collected during the experiment. In this letter the aim of the project was described and 

how teachers and students should contribute and what kind of data I will collect during the 

project. The intention of the information letter was to ensure transparency and openness about 

interest, research plan, methods and results, not only in reporting but also in relation to the 

participants in the project (Jensen et al., 2020). To ensure that the participants knew the purpose 

before signing the cooperation agreement, I held a meeting before the experiment started to 

inform the teachers about the purpose of the intervention. I made it clear that the intervention 

was an experiment with only suspected benefits. By participating in the experiment, schools are 

contributing to educational research. If the intervention is found to have a positive impact on 

how school algebra is taught and learnt in school, then the experiment will have a positive 

impact on the school as an institution. Although the benefits may not be immediately apparent, 

the experiment could form part of a longer-term strategy to enhance the knowledge of 

mathematics teachers and students in the field of school algebra, with the potential for further 

improvement over time. While there is a possibility that the intervention may have a negative 

impact, this likely to be limited given that the experiment utilizes validated and empirically 

tested textbook material.  

We base our study in ATD, with a focus on the institutional conditions and constraints 

when teaching algebraic expression using a Japanese textbook chapter. The study aims to 

describe praxeological changes (Putra, 2019), when using a foreign textbook chapter. It should 

be noted that this research does not focus on individuals, but rather on the didactic system as a 

whole.  

5.6 Responsible conduct of research in the project 

The project integrates quantitative and qualitative methods in line with the ATD methodological 

tradition to classify mathematical praxeologies and in relation to modelling praxeologies (Garcia 

et al., 2006). The project will comply with the Danish Code of Conduct for Research Integrity 

(Science, 2019) and the General Data Protection Regulation as described in the Official Journal 

of the European Union Regulation 2016/679 (Regulation (EU) 679, 2016). Because “The 

purpose of the GDPR is to impose a uniform level of privacy protection in all Member States 
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when data is processed in the Member State or transferred to other Member States within the 

EU/EEA” (Jensen et al., 2020, p.119), and “Any information which can directly or indirectly be 

linked to an identifiable person counts as personal” (Jensen et al., 2020, p.120), the teachers 

participating in the experiment was informed that all empirical data collected for the research 

purpose, including the diagnostic test results, observations, and interviews, would be 

anonymized in any subsequent publications. This signifies that 'the individuals are not or are no 

longer identifiable and could not be identified by further processing of the data' (Jensen et al., 

2020). During the analysis of the diagnostic test results, the students is anonymized for both 

ethical and practical reasons. As stated by (Jensen et al., 2020, p. 58) “When personal data is 

fully anonymized, it can be managed in the same way as other non-sensitive data”. This 

approach allows for the discussion of the analysis and results with colleagues without the risk of 

identifying the schools, teachers or students.  
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6 Results 

In this section we present the main results of the thesis understood as answers to the four 

research questions (section 4). Notice that subsections 6.1-6.2 reflect the analysis of algebraic 

knowledge to be taught, actually taught and learnt (or not learnt) in DLS. 

6.1 Algebraic praxeologies in Danish lower secondary school 

We have organized the analysis of the algebraic knowledge to be taught in DLS according to the 

various stages and documents that were identified in Section 3: the official program (CO), the 

national exam, and textbooks (figure 5). In order to go beyond analyzing the aimed-at (final) 

praxeologies, we also look at the progression suggested by the CO and especially the textbooks, 

and with particular attention to the progression with respect to the theory level and with respect 

to the levels of algebraization (cf. section 3.5.2).  

6.1.1 The progression of school algebra in the common objectives 

In Denmark, the CO for mathematics serve as official guidelines for primary and lower 

secondary schools (Education, 2019). These goals form a competence-based curriculum with 

mathematical organization that combines mathematical topics in number and algebra, geometry 

and measurement, and statistics and probability. The six competencies’ associates with each 

topic are: problem solving, modelling, reasoning and thinking, representations and symbol 

processing, communication, and assistive technology. The aim of the competencies’ is for “the 

student to act with judgement in complex situations with mathematics” (Education, 2019, p. 9). 

The overall aim for students after lover secondary school (grade 9.) according to the MO number 

and algebra is, that the students can use real numbers and algebraic expressions in mathematical 

investigations. IN order to gain an overview of the manner in which the overarching objective is 

delineated in the CO, we have constructed a table 4 of the MO in CO.  

 In the CO algebra is divided into three RMOs: 'equations', 'formulas and algebraic 

expressions' and 'functions'. Each RMO is further subdivided into learning objectives (LMOs), 

which are subdivided into techniques and the knowledge required for these techniques table 4. 
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Table 4. MO in the CO of the algebraic domain in DLS (Tonnesen, RDM, Table 1)  

 
 

On the one hand LMO2,1 and LMO2,3 refers to algebra as an intra-mathematical modelling tool 

e.g. LMO2,1 could include modelling geometric relationships as the perimeter and areas of a 

polygon and LMO2,3 could include associativity for addition and multiplication. On the other 

hand, LMO2,1 can refer to “geometric algebra”, a method where geometric models are used to 

justify mathematical properties such as the distributive property (Paper IV). Based on these to 

interpretations, it can be argued that LMO2,1 and LMO2,3 permits the utilization of algebra as an 

intra- and extra mathematical modelling tool, but is conditional on LMO2,2. This is a MO where 

the spiral structure allows for integration and flexibility between the RMOs and LMOs and it is 

possible to achieve higher-level objectives by applying knowledge and skills rather than just 
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memorizing facts (cf. Chap. 5.6.3). The process of developing a progression from simple to more 

complex problems, in which fundamental algebraic concepts are introduced (e.g. the use of 

variables) in a structured and incremental manner, is through the EDT2 (figure 2.). In order to 

narrow the EDT2, it is useful to analyze that types of tasks are included in the mathematical 

national exam after DLS.  

6.1.2 Algebraic praxeologies and levels of algebraization in the national written exam  

A complete praxeological analysis of the types of tasks appearing in the national exam (with and 

without aids) was elaborated by Poulsen (2015). A main outcome is that most tasks are of the 

type “solve a first order equation”, and that the only really necessary technique for solving the 

equations is the technique of substitution (guessing a solution by trial-and-error). In particular, 

solutions are always small positive integers. There are also a few examples of algebraic 

modelling, often with the model being presented by the exercise and merely to be used by the 

examinees. In this section presents an analysis of three illustrative examples, with a particular 

emphasis on the level of algebraization.  

 In the Danish paper and pencil unaided written exam after grade 9, tasks like 40 + ____ =

50 + 15 appear frequently. The items can be solved “mentally”, without any algebraic 

reasoning, and is a very basic example of the first stage of the algebraization process where the 

students consider the CP “40 plus something” as a whole. In the written exam there are also 

equations in the more common algebraic notation form:  

3𝑥𝑥 + 1 = 10,       𝑥𝑥 =  

5𝑥𝑥 − 3 = 2𝑥𝑥 + 18, 𝑥𝑥 = 

2(𝑥𝑥 + 4)
𝑥𝑥 = 6, 𝑥𝑥 =   

 

In fact all three equations can be solved by substitutions of small positive integers 𝑥𝑥 ∈

{1,2,3, … ,7}, which, a priori, is expected to be the dominant technique used. In the third 

equation, the substitution with two integers is successful and the student can be satisfied with 

finding one solution, as they have never encountered equations with any other number of 

solutions than one. By using substitution as a technique for solving equations, the algebraization 

process remains at the first stage (Paper I).   

The last example is a mathematical problem from the national written exam (2017).  
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In an item, students are asked to explore a series of squares that can be modelled by a number 

pattern, in which 𝐾𝐾𝑛𝑛 designated the number of squares in a certain number pattern. In the last 

question, students are asked the following “You must show that the formula 𝐾𝐾𝑛𝑛 = 𝑟𝑟(𝑟𝑟 − 1 + 𝑛𝑛) 

can be rewritten as 𝐾𝐾𝑛𝑛 = 𝑟𝑟(𝑛𝑛 − 1) +  𝑟𝑟2” (Education, 2024). In this example, the result is given 

and all that is required of the students is that they should provide “correct transformations with at 

least one intermediate result” such as 𝑟𝑟2 + 𝑟𝑟(−1 + 𝑛𝑛), according to the exam instructions. In 

REM, this rewriting requires explicit reference to theory, with simple use of the distributive 

property, the meaning of exponents and the commutative property of addition (Paper I). We also 

note that there is no questioning the importance of rewriting when using algebra as a modelling 

tool; the above rewriting has no visible function at all and appears as an unmotivated trick that 

the students should explain. In the last example, the level of algebraization also remains at the 

first level.  

 In order to gain insight into the progression from CP to the initial stage of the first level of 

algebraization, essential praxis and logos blocks in arithmetic will serve as the foundation for a 

praxeological analysis of the progression in the textbook material for DLS.  

6.1.3 Praxeological analysis of progression in the textbooks 

In the Danish Textbook KonteXt+, the chapter titles refer to the mathematical content, but the 

sections are divided according to different types of tasks and activities (Paper II, Table 3). This 

structure reflects the spiral and integrated approach of the CO, in which mathematical 

competences and praxeologies are developed and revisited over several years.  

Case: Textbook progression in fraction praxeologies through grade 5-9  

An example is the problem of ordering two given fractions, where you have to decide which one 

is the largest. In this type of task, the two fractions either can both be simple fractions, fractions 

with like denominators and different numerators or fractions with like numerators and different 

denominators.  
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Table 5. Theme in the DEM according to fractions in the textbook material (Paper IV, Table 1)  

Type of task Techniques Kon-
text+

5 

Kon-
text+

6 

Kon-
text+

7 

Kon-
text+

8 

Kon-
text+

9 

T19: Given two simple 
fractions 1

𝑎𝑎
 and 1

𝑏𝑏
 , which 

is largest 

τ19: The fraction with the 
lowest denominator is largest 
i.e., 𝑎𝑎 < 𝑏𝑏 ⇒ 1

𝑎𝑎
> 1

𝑏𝑏
 

     

T20: Examine which 
fraction with like 
denominator and 
different numerators, 𝑎𝑎

𝑐𝑐
 

and 𝑏𝑏
𝑐𝑐
 is largest. 

τ20: The fraction with the 
highest numerator is largest 
i.e., 𝑖𝑖𝑖𝑖 𝑎𝑎 < 𝑏𝑏 ⟹ 𝑎𝑎

𝑐𝑐
< 𝑏𝑏

𝑐𝑐
 

 

     

T21: Examine which 
fraction with like 
numeration and 
different denominators 
fraction 𝑎𝑎

𝑏𝑏
 and 𝑎𝑎

𝑐𝑐
 is 

largest. 

τ21: The fraction with lowest 
denominator is largest i.e., 
𝑖𝑖𝑖𝑖 𝑏𝑏 < 𝑐𝑐 ⟹ 𝑎𝑎

𝑏𝑏
> 𝑎𝑎

𝑐𝑐
 

 

     

 

These types of tasks are all located in the textbooks KonteXt+5 to KonteXt+9 (Grade 5 to 9) 

table 5. In the textbooks, it is a group of practices that are taught together and unified by a 

common discourse in techniques that includes characteristics of the particular cases and 

descriptions of the techniques (Paper IV). Therefore, the potential for advancement that could be 

achieved by treating the various tasks in a consecutive manner is not realized. This results in the 

presence of all three types of tasks within the textbooks over the course of five years. The serves 

to illustrate how task types and techniques constitute an integral part of the arithmetic foundation 

upon which the transition to algebra is based.  

 In order to gain knowledge of the theoretical elements of arithmetic that are built upon in 

school algebra, we will analyze the level of theory in DLS textbooks, using the distributive 

property as an illustrative example.  



49 

 

Case: The level of theory in DLS textbooks - the distributive property.  

The distributive property is the crucial link between addition and multiplication (and field 

axiom) that forms part of the theoretical level of both arithmetic and algebra in REM (Paper V).  

The progression at the level of theory can be illustrated by the introduction to the distributive 

property in the Danish textbook material, which appears several times in different grades and in 

different forms. The distributive property is introduced in different contexts and gradually 

integrated into both arithmetic and algebra, through special cases and tasks of increasing 

difficulty (Paper II). As an example, the textbook emphasizes that “You can use geometric 

figures to model arithmetic rules with letters” (Lindhardt et al. 2021, p. 95). To illustrate, an 

example is given where a rectangle is divided vertically into two smaller rectangles; the textbook 

claims it proves the distributive property. In fact, the area of the large rectangle is 𝑐𝑐 ∙ (𝑎𝑎 + 𝑏𝑏)  

and can be written as the sum of the two parts of the rectangle 𝑎𝑎 ∙ 𝑐𝑐 + 𝑐𝑐 ∙ 𝑏𝑏. The generality and 

variations of the distributive property remain implicit: it is not pointed out to the students that the 

example is special (assume that 𝑎𝑎, 𝑏𝑏 > 0) (Paper V) and so does not prove the general property. 

“Distributivity” as an assumption or axiom in algebra is generally not introduced. The 

description of the distributive property in algebra in the textbook is not explicit linked to 

knowledge of the distributive property in arithmetic. Consequently, the theoretical levels 

associated with arithmetic are not used as a foundation for the introduction of theoretical 

elements in algebra, and the coherence and connection of MOs that CO allows for is not created.  

To ascertain whether this is merely an isolated case, we will look at the level of algebraization in 

the textbooks, with a view to determine the implicit or explicit theoretical level of the books in 

question.  

6.1.4 The level of algebraization in DLS textbooks 

In the KonteXt+ series of textbooks, algebra is described as the “language of mathematics” and 

readers learn that “many of the arithmetic rules and notations that apply to numbers, also apply 

to letters. If you are not sure how to calculate with letters, you can often try with numbers” 

(Hansen et al., 2016b). The description of algebra as the language of mathematics therefore 

competes with simple tricks to solve algebraic exercises arithmetical techniques (Paper I). The 

term “rules” is used to refer to both mathematical properties (e.g., the commutative law) and 

notational conventions (e.g., writing a·x as ax), in particular, with no distinction between theory 

and technology (Paper II).  
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In the Danish textbook, the algebraization process occurs mainly at the first level (arithmetic), 

with CP represented symbolically. More generally, in DEM, key algebraic conventions and 

principles emerge through repeated exposure rather than formal introduction, leading to 

algebraization in gradual and implicit ways. The Danish curriculum resources use common sense 

terms like "calculation rules" rather than the precise mathematical language about mathematical 

properties.  

The extent to which this “common sense approach” is also reflected in the knowledge taught will 

be accessed by analyzing algebraic praxeologies current taught in DLS.  

6.1.5 Taught algebraic praxeologies in DLS 

In this project, we have only carried out limited observations of “actually taught” algebra in 

DLS, prior to the experimental phase (cf. section 5.1.1). The observations revealed a general 

structure where didactic processes are limited to moments of first encounter, moments of 

exploration and moments of technical work, but without the constitution of a shared technologic-

theoretical block and in particular without justification of the techniques worked on. The focus 

on exploration and technical work reflects priorities in the textbook material. This means that the 

third moment of the study process (section 2.4) is limited and the foundation for the fifth 

moment (institutionalization of the entire praxeology) is missing.  

It will be easier to grasp these overall observations through a concrete episode. 

 In a grade 8 lesson on solving equations, the teacher seeks to establish a "recipe" for 

solving equations of the form 𝑎𝑎𝑥𝑥 + 𝑏𝑏 = 𝑐𝑐. The teacher does not use such symbolism but 

proceeds with examples were 𝑎𝑎,𝑏𝑏 and 𝑐𝑐 are given. The first example he proposes is 3(𝑥𝑥 − 4) =

6. The students begin to discuss the difference between "reduce" and "solve." After a while, the 

teacher writes 3(𝑥𝑥 − 4) = 6 on the whiteboard and asks the students to explain how to solve the 

equation.  

A student explains that she solves the equation mentally, by thinking what inside the parentheses 

would give two. The teacher labels this method as "trial and error”.  

Another student perceives (𝑥𝑥 − 4) as a unit and at the same time as an expression with a variable 

and rewrite the equation to (𝑥𝑥 − 4) = 6
3
 and says, “Then we get x minus four” (Paper I). The 

teacher acknowledges this but cuts off the exploration to explain a very different method.  

The teacher writes 3(𝑥𝑥 − 4) = 6  on the whiteboard again and draws curved arrows from 3 to 𝑥𝑥 

and from 3 to 4. After this implicit ostension of the distributive law, the teacher writes 3𝑥𝑥 −

12 = 6 and says “I have just multiplied into the parentheses. Now I want to move −12 to the 
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other side”. This technique of "moving" numbers is frequent in teachers’ explanations of 

operations on algebraic equations. Then the teacher writes 3𝑥𝑥 =18 on the whiteboard and says 

“Then we must find out what to multiply 3 by, to get 18. We should only divide by 3” and writes 

𝑥𝑥 = 6 on the whiteboard. A student asks: “…. how do we know that we could not subtract 12 

from 3𝑥𝑥?” (referring to the step 3𝑥𝑥 − 12 = 6). The teacher exclaims, "You cannot subtract 

numbers from 𝑥𝑥's," but does not prove the justification asked for by the student. This, indeed, 

would require a technological-theoretical environment involving the meaning of equivalent 

expressions and equations. The textbook provides no support for creating such an environment, 

which could associate more general principles to the given example. Instead, the teacher merely 

demonstrates an alternative technique which is not more efficient for solving the given task than 

the spontaneous techniques developed by the students. The technology he must use remains 

idiosyncratic and highly informal (curly arrows to “show” how to “multiply into” a parenthesis, 

“moving” numbers etc.).  

 We note here that although this episode may seem rather particular, the textbook’s lack of 

support of the third (and therefore also the fifth) moment is quite general (see also section 6.3), 

and we consider this the principal cause of their absence in the above and many other observed 

episodes. This reinforces the interest of experimenting alternative text material in view of 

enabling teachers to organize more complete didactic processes. 

6.1.6 Summarizing main points of algebraic praxeologies currently taught in DLS.  

The preceding results of the praxeological analyses of what algebraic praxeologies are currently 

taught in the Danish lower secondary school, and to what extent does the teaching offer a 

systematic progression at the level of theory, can be summarized in the following headings:  

 

• Focus on arithmetic and algebraic techniques.  

The analysis of the textbook material and the written exam reveals a predominant focus on 

arithmetic an algebraic techniques. Additionally, the textbook place significant emphasis on 

repetition, whereby the specific types of tasks and associated techniques are reiterated across 

multiple grade levels.  

 

• Limitations in the transition from arithmetic to Algebra 

Arithmetic praxeologies form the basis of the initial introduction to school algebra, but the 

algebra presented is often a set of rules or techniques rather than a fully developed system. 
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The theoretical elements of arithmetic (e.g. distributive property) are not linked to algebra, 

and the possible coherence and connections between MOs of arithmetic and MOs of algebra 

are not established.  

 

• Implicit level of theory  

The teaching of basic algebra tends to focus on techniques with little emphasis on justifying 

these techniques or developing theoretical concepts (e.g., distributive property).  Key 

theoretical elements such as commutative and distributive properties are rarely introduced 

explicitly in mathematical terms. While arithmetic praxeologies serve as the foundation for 

the initial introduction to algebra, the theoretical progression is often explicit, with algebra 

typically presented as a set of “rules” or techniques rather than as fully theorized system.  

 

• Implications of the CO structure and approach  

The CO employs a gradual, spiraling approach to algebraic praxeologies, with an emphasis 

on providing a description of competencies that students should attain. For instance, the CO 

for grade 9 outlines that students should be able to “set up and solve equations and simple 

inequalities”. However, while the CO is comprehensive, it does not explicitly address 

theoretical element such as the commutative and distributive properties in mathematical 

terms.  

 

It is therefore anticipated that the structure and content of CO, textbooks and final exams will 

facilitate a certain degree of technical proficiency, although there may be limited scope for 

systematic theoretical progression. The extent to which this phenomenon is present in the 

knowledge learnt will be discussed in the following section 6.4 .  

6.2 Problematic algebraic techniques in DLS  

The following chapter explores what algebraic techniques are particularly problematic for 

students in DLS and what theoretical gaps these challenges reveal. This is achieved by initially 

examining the types of tasks related to algebra that are not answered correctly by a significant 

proportion of students at the national exam after DLS. To gain further insight into the techniques 

students use to solve these problematic types of tasks, we will analyze a selection of types of task 

from the diagnostic test (cf. section 5.2).  
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6.2.1 Problematic algebraic techniques in the national written exam after DLS 

After grade 9, students sit a national and compulsory written exam in mathematics for the first 

time in their school life. Around 60.000 students take this exam every year. In this section, we 

provide some data from the exams held in 2018 and 2019. The test has two parts, one part 

without aids, where the students only indicate solutions, and another part where students also 

write explanations of their results and can use digital tools. It is not possible to gain access to 

actual student responses from the second part; therefore, the data as a whole provide no insight 

into the actual techniques used by students. From the accessible data on the exam, we can only 

see the percentages of students who have correct or partially correct (sometimes at 2 levels) 

answers, and therefore we can only use these data to identify types of task that are particularly 

problematic. In the next section, we report on a diagnostic test that we carried out to gain further 

insight into the techniques students use (or do not use) for these problematic types of task. 

Table 6 and 7 provide a few examples of items from the first part of the exam, and the share of 

students who provided correct answers.  

Table 6. Correct student answers of items in the written exam without aids 2018 (Paper I) 
Item 

Year 2018 
Task 

Solve the equations 
Type of task Correct 

answer 

7.1 6x + 4 = 28 
x = 

T: Solve Ax + B = C 88% 

7.2 x
2 + 1 = 5 

x = 

T: Solve first degree 
equation wich include 

fraction 

66% 

7.3 4 ∙ (x− 2) = 2x + 6, 
x = 

T: Solve first degree equation with 
brackets and unknown on both sides  

44% 

 

Table 7. Correct student answers of items in the written exam without aids 2019 (Paper I) 
Item 

Year 2019 
Task 

Solve the equations 
Type of task Correct 

answer 

11.1 3x + 1 = 10 
x = 

T: Solve  Ax + B = C 89% 

11.2 5x− 3 = 2x + 18, 
x = 

T: Solve Ax + B = Cx + D 61% 

11.3 2(x + 4)
x = 6 
x = 

T: Solve first degree equation which 
 include brackets and a fraction 

 

46% 

 

The results from table 7 and 8 show that the presence of the unknown on both sides of the 

equation, of brackets and of fractions, all lead to types of tasks which are more difficult than the 
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simple form Ax + B = C (where A, B and C are natural numbers), even more so if they are 

combined (the last row). A priori analysis suggests that all items can be solved by the technique 

𝜏𝜏: trial-and-error by substitution of one-digit natural numbers, and for other reasons it is very 

plausible that most students apply this technique consistently. If so, it is still considerably more 

difficult to execute the technique in the tasks that involve parentheses, fraction, unknown on both 

sides, or (worse) a combination of these. The other items in table 7 and 8 can also be solved 

using the 𝜏𝜏: trial-and-error by substitution of integers, but this technique requires more CPs. Of 

course all the equations can also be solved by algebraic rewriting techniques like 𝜏𝜏:addition, 

subtraction, multiplication or division in both sides of the equal sign, but we don’t know to what 

extent the students may attempt to do that.  

 Another area of difficulty for students in the written exam is the use of algebra as a 

modelling tool. In the national written exam in June 2019, 70% of the students were able to 

correctly determine the perimeter of a polygon with sides given in terms of an unknown (so a 

side length could be for instance 2𝑥𝑥). Only 26% of the students could determine the area of the 

same polygon correctly, even if all sides were orthogonal or parallel to one another.  

6.2.2 Problematic techniques according to the diagnostic test 

In order to gain further insight into the algebraic techniques used, the algebra tasks in the 

national exam were replicated in the diagnostic test.  

Table 8. Correct and incorrect student answers of items in the diagnostic test (Paper I) 
Item  Item 

Nr. 

Correct  

Grade 

7 

Correct 

Grade 

8 

Incorrect 

Grade 7 

Incorrect 

Grade 8 

No 

Answer 

Grade 

7 

No 

answer 

Grade 

8 

2x = 10 
x = __ 

2.5 44 
64% 

18 
82% 

10 
15% 

0 
0% 

15 
21% 

4 
18% 

2x = 16 + 2 
x = ____ 

3.6 29 
42% 

12 
55% 

19 
28% 

3 
14% 

21 
30% 

7 
32% 

7x− 7 = 13− 3x 
x = ____ 

4.7 15 
22% 

3 
14% 

20 
29% 

4 
18% 

34 
49% 

15 
68% 

x ∙
3
4 =

15
20 

x = ___ 

7.6 17 
25% 

8 
36% 

7 
10% 

1 
5% 

45 
65% 

13 
59% 

 

Table 8 illustrates that approximately 50% of the students in grade 7 and 8 answered item 3.6 

correctly.  
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By analyzing the percentage of correct answers for each item, we can get a picture of which type 

of tasks are challenging for students in DLS. But we can also gain insight into the institutional 

differences where item 4.7 of the task type 𝑇𝑇: Solve the first-degree equation of the form Ax +

B = Cx + D, seems to cause more problems for students in grade 8 than in grade 7. According to 

our a priori analysis (Paper I), we expect that the presence of the unknown on both sides of the 

equations will make it difficult to use substitution, and that students will therefore solve item 4.7 

by collect same type of terms and the reduce the coefficient of x. This is not the case in the 

examples figure 6 and 7 (Paper I). 

 

 

Figure 6. Student answer to item 4.7 in the diagnostic test (Paper I) 

 

 

Figure 7. Student answer to item 4.7 in the diagnostic test (Paper I) 

 

The responses of the students in figures 6 and 7 illustrate two examples of the techniques used. It 

can be seen that the attempts to use algebraic methods were not successful. The addition of 

opposite numbers and the distributive property were unsuccessful, and students attempted to use 

arithmetic operations with limited success. These 𝜏𝜏∗ in figures 6 and 7 are reiterated in different 

forms in the incorrect answers to item 4.7 (table 8).  

 A synthesis of the data pertaining to the number of students who solved the algebraic items 

in national and diagnostic tests, respectively, reveals a prevalence of problematic algebraic 

techniques among students in grade 7, 8 and 9. Specifically, approximately half of the students’ 

exhibited deficiencies in their ability to utilize algebraic techniques. This phenomenon may be 

attributes to an overemphasis on arithmetic and algebraic techniques, coupled with an implicit 

theoretical level (cf. section 6.3) that hinder a praxeological change.  
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6.2.3 The level of algebraization according to the diagnostic test  

According to the DEM, the algebraization process occurs in a gradual and implicit manner, 

whereby key algebraic conventions and principles emerge through repeated exposure rather than 

formal introduction. The level of algebraization is mainly observed at the first level, with CP 

represented symbolically (cf. section 6.1.4). Therefore, it is crucial to consider the arithmetic 

foundation upon which the algebraization process is based. In the following section, we will 

present examples of the fragile arithmetic foundation and its implications.   

 The diagnostic test (cf. section 5.2) includes items from both arithmetic and school algebra, 

the former in view of investigating students’ prerequisites for the transition from arithmetic to 

algebra we are studying. In item 5.1 in the diagnostic test, students are asked to show how they 

carry out a given, lengthy calculation (see figure 8).  The item provides an opportunity to assess 

to what extent students see the CP as a whole or as consecutive series of independent processes, 

and thus determine their readiness for the first level of algebraization (cf. section 3.5.2).  

Table 9. Correct and incorrect student answers of item 5.1 in the diagnostic test 
Item  Item 

Nr. 
Correct  
Grade 
7 

Correct 
Grade 
8 

Incorrect 
Grade 7 

Incorrect 
Grade 8 

No 
Answer 
Grade 
7 

No 
answer 
Grade 
8 

 
15+38+121-42+42-39= 

5.1 33 
48% 

7 
32% 

21 
15% 

7 
32% 

15 
21% 

8 
36% 
 

 

Table 9 illustrates the outcomes of item 5.1 in the diagnostic test, which revealed that less than 

half of the students provided the correct response. This suggests that lengthy calculation is not a 

straightforward task type for the students in grade 7 and 8. In order to gain insight into the 

techniques used, we will examine three responses to the task, each of which demonstrate a 

variation og the technique 𝜏𝜏: stepwise addition and subtraction.  

 

 

Figure 8. CP with stepwise addition and subtraction   
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Figure 9. CP with stepwise addition and subtraction in a vertical schema 

 

 

Figure 10. CP with the addition of the opposite and stepwise calculation  

 

 The response in figure 8 employs the horizontal scheme of the CP, whereas figure 9 

utilizes the vertical scheme of the CP. Despite the differing schemes, the techniques use in 

figures 8 and 9 are the same. Figure 10 illustrates the application of two fundamental 

arithmetical techniques 𝜏𝜏: addition of the opposite, is used first and then 𝜏𝜏: calculation the sum 

by repeated addition or subtraction of two integers at a time. The responses also offer insight into 

technological-theoretical element, as the technique 𝜏𝜏: addition of the opposite, is only employed 

when the integers are written in immediate succession, as in the case of −42 + 42 (figure 10). 

However, it is not utilized in instance where the integers are not written next to each other, such 

as in the case of + 39 and -39. This serves to illustrate that the theoretical elements, such as the 

commutative property, are not part of the students’ topos.  

 In the transition from arithmetic to algebra, several praxeological changes (cf. section 2.3) 

are required, including the representation of relations (Kieran, 2004). In arithmetic, an 

expression such as 8 + 4 is understood as the CP, where the objective is to find the sum. 

However, it the expression 8 + 4 = ___ + 5 is viewed as a CP in arithmetic but not in algebra, it 

can result in an incorrect value of 12, despite the correct answer being 7. This was the case for 

approximately 50% of the responses to the diagnostic test.  
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Figure 11. Response where the CP is not perceived as a unified entity.  

 

In item 1.6, figure 11, the CP is not perceived as a unified entity, but rather as a CP with addition 

“from left to right”, which results in an erroneous response. The technology of the equal sign is 

constrained and presents an obstacle to achieving the first level of algebraization.   

6.2.4 Summarizing main points on problematic algebraic techniques in DLS.  

The results of the praxeological analyzes of the national written exam and the diagnostic test 

have provided insights into problematic algebraic techniques which can be summarized under 

the following heading:  

 

• Problematic algebraic techniques identified  

In the national exam and diagnostic test, half of the students struggles with basic algebraic 

techniques, including trial-and-error substitution, manipulation of equations, and solving 

first-degree equations with variables on both side of the equal sign. 

Only a quarter of the students could solve simple algebraic modelling items related to the 

area of polygons (Paper V). 

 

• The transition from arithmetic to algebra 

The use of arithmetic operations to solve equations is only partially successful at best. Some 

of the errors that arise in attempts to use algebraic rewriting techniques can be explained by 

students’ doing operations only on one side of the equation, mimicking calculations learnt in 

arithmetic. Other difficulties, like parenthesis or fractions adding difficulty for using trial-

and-error substitution, are caused by non-mastery of parentheses and division in the context 

of integers. This emphasizes the importance of a solid foundation in arithmetic to ensure a 

successful transition from arithmetic to algebra.  
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6.3 Japanese textbook use in DLS: conditions, constraints and outcomes  

In order to describe and analyze the outcome of our experiment – teachers using a Japanese 

textbook chapter in DLS – we will look at praxeological changes in the algebraic knowledge to 

be taught, and in the algebraic knowledge actually taught and learnt. The textbook chapter was 

chosen because it introduces algebraic expressions based on mathematical investigation and 

arithmetic expressions with a clear technological and theoretical justification and a carefully 

chosen example of algebra as a modelling tool (Paper II). Based on the analysis of the internal 

transposition observed, we aim to identify the main conditions and constraints, which the use of 

the foreign textbook meets in the experiment, as hypotheses for what may occur more generally 

for this case of curriculum import.  

 This section presents the main findings from the actual use carried out by the teachers and 

students. The findings are presented in accordance with the didactic transposition (see figure 2), 

which is presented in inverse order (from learnt knowledge, to knowledge to be taught). The 

process commences with an examination of the results from the diagnostic test. This is followed 

by an investigation of the results in accordance with taught knowledge based on observation and 

interviews, and textbook analysis to determine the knowledge to be taught.  

6.3.1 Praxeological change based on the diagnostic pre- and post-test 

The diagnostic test was designed with two distinct purposes in mind. Primarily, it was intended 

to contribute to the thorough diagnosis of knowledge learnt by DLS students at large. Secondly, 

it was designed to serve as an indicator of potential praxeological change when using Japanese 

textbook chapter in DLS, by comparing students’ responses (techniques, technology and to some 

extent theory) before and after the experiment.  

 The students completed the diagnostic test immediately prior to and following the 

intervention period. To avoid memorization of the test results, superficial numerical changes in 

the tasks were employed in the post-test (cf. section 5.2.1). Table 10 presents the percentage of 

correct responses to the items (same types of task) in the pre- and post-test, where 56 students 

answered the pre-test, and 60 students answered the post-test. Only pre- and post-test results for 

items assessing the same type of task and associated technique are used for this study. 

Consequently, the total score will not be used as there is no direct comparability between alle 

items in the pre- and post-tests. Furthermore, the relatively modest size of the test group must be 

considered. 
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Table 10. Percentage of correct answers in pre- and post-tests according to item number.  
Percentage of correct answers in pre- and post-test. 56 students completed the pre-test, and 60 students completed the 

post-test both groups from grade 8 at the same school. Items with a significant positive difference in percentage 
between pre- and post-test are highlighted using boldface numbers and grey background. Items with a significant 
negative difference are highlighted using only boldface numbers. Items in italic assess technological or theoretical 

element but these are not directly comparable between pre- and post-test because of significant variations in the content.  

Item Pre Post Item Pre Post Item Pre Post Item Pre Post 
1.1 89 82 2.1 82 83 3.1 87 92 4.1 91 93 
1.2 46 52 2.2 95 95 3.2 36 77 4.2 62 67 
1.3 82 70 2.3 63 67 3.3 58 62 4.3 35 40 
1.4 82 28 2.4 83 92 3.4 44 65 4.4 85 43 
1.5 35 47 2.5 78 80 3.5 35 75 4.5 7 52 
1.6 58 65 2.6 63 75 3.6 67 48 4.6 7 45 
1.7 80 90 2.7 60 70 3.7. 64 28 4.7 27 43 
1.8 91 13 2.8 33 62 3.8. 0 21 4.8 13 42 
1.9 18 33 2.9 67 73    4.9 44  

 

Item Pre Post Item Pre Post Item Pre Post Item Pre Post 
5.1 47 67 6.1 56 75 7.1 95 87 8.1 89 87 
5.2 40 47 6.2 38 35 7.2 87 37 8.2 16 25 
5.3 85 92 6.3 35 53 7.3 38 33 8.3 29 42 
5.4 35 30 6.4 31 57 7.4 38 50 8.4 51 27 
5.5 49 50 6.5 71 68 7.5 2 42 8.5 24 15 
5.6 4 65 6.6 27 35 7.6 35 65 8.6.a 18 12 
5.7 5 33 6.7 62 47 7.7.a 4 50 8.6.b 5  
5.8 20 25 6.8 25 42 7.7.b 2 40    

 

The data presented in table 10 demonstrates that the majority of items are answered with a 

similar percentage of correct answers.  

Table 12. Exceptional items with significant decline from the pre- to the post-tests  
Item 
no. 

Pre-test item  Post-test item  

1.4 6 + (−5) = 
 

−(23 − 7) = 
 

8.4 Write an equation to fit the statement: I am 
twice as old as my son 

Write an equation to fit the statement: I am 
twice as old as my son 

 

The lack of correct responses to item 1.4 can be attributed to the fact that the variation was done 

incorrectly. The pre-and post-items do not test the same technique, due to the different uses of 

the additive inverse in the pre-test and post-test (table 12). The lower success rate of item 8.4 in 

the post-test is related to time pressure in the post-test, due to the addition of further items with 

theoretical content.  

 The items that had significantly positive change can be grouped into three main categories: 

types of task that employ arithmetic techniques (table 12), types of task that employ algebraic 

techniques (table 13) and types of task that involve algebra as a modelling tool (table 14). The 
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following sections will describe conditions and constraints for praxeological change, with a 

focus on these three groups of types of task.  

6.3.2 Praxeological change according to arithmetic 

A praxeological change is essential to address the problematic arithmetic and algebraic 

techniques outlined in section 6.3. The extent to which the textbook chapter can contribute to a 

praxeological change will be discussed below by examining the arithmetic items in the 

diagnostic test that have demonstrated the most significant positive change.  

Table 12. Significant positive items all of which utilize arithmetic techniques  
Item 
no. 

Item  Type of task  Techniques  

5.1 Show how you calculate                             
17 + 29 + 132 − 52 + 52− 29 = 

Long calculation 
with addition and 
subtraction 

Addition and subtraction  

2.7 −18: 3 = Division of 
negative integer 
 

Division  

6.1 ______: 4 = 4 Division of an 
unknown 

Opposite operation  
or 
Trial-and-error-substitution 

7.4 16− 9− 2 ∙ 3 = Calculation with 
multiplication and 
subtraction  

Multiplication and 
subtraction  

1.5 7− (−9) = Subtraction of 
negative integer 

𝑎𝑎 − (−𝑏𝑏) = 𝑎𝑎 + 𝑏𝑏 

2.6 5 ∙ (−7) = Multiplication of 
negative integer 

𝑎𝑎 ∙ (−𝑏𝑏) = −𝑎𝑎𝑏𝑏 

3.2 𝑘𝑘(5 + 3) = Calculation with 
bracket  

𝑘𝑘(𝑎𝑎 + 𝑏𝑏) = 𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑏𝑏 

3.4 (−12) + (−9) = Addition of two 
negative integers 

(−𝑎𝑎) + (−𝑏𝑏) = 

−(𝑎𝑎 + 𝑏𝑏) 

2.8  Put 𝑎𝑎 = 3 and 𝑏𝑏 = 4 and calculate 
2𝑎𝑎 + 3𝑏𝑏 = 

Substitution of 
integers in an 
algebraic 
expression 

Calculation by substitution 

 

With the exception of item 2.8, all items in table 11 consist of typical arithmetic tasks that one 

would expect eighth-grade students to solve easily. As an example, item 5.1 has been discussed. 

(see section 6.3.3). It seems reasonable to posit that the significantly correct answers to items 

involving negative terms and “bracket rules” can be attributed to the textbook’s explicit use of 

notation (see episode 2/2, Paper III) and theory about “bracket rules” (see episode 2/1, Paper III). 
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The explicit description of the use of algebraic notation is a key element in the textbook material 

(Paper II). Given that the textbook chapter used in the experiment pertain to algebraic 

expressions, it is also of interest to ascertain whether this is also reflected in the diagnostic post-

test.  

6.3.3 Praxeological change from arithmetic to algebra in the Japanese textbook chapter  

The transition from arithmetic to algebra requires a praxeological change. The textbook chapter 

“algebraic expression” used for the teaching experiment starts with an opening problem where 

the students have to determine how many sticks are needed to make chains of squares of 

different lengths (se front page of this thesis). The devolution of the opening problem where the 

teacher hands over the responsibility of the enquiry process to the students is straightforward, 

because the students can draw on already established techniques. The opening problem acts as a 

catalyst, introducing the variable x to represent the number of squares in the chain. This sets the 

stage for an important shift, moving from arithmetic expressions to algebraic modelling of the 

patterns. The episode has a profound effect on the learnt algebra knowledge: as the students 

work through the problem, they realize that two algebraic models to determine the number of 

sticks needed for a chain of given length, give the same result. This leads the students to assume 

that the two models are equivalent.  

 Although the textbook emphasizes that algebraic expressions can both represent and solve 

the problem (Isoda & Tall, 2019, p.63), this idea is not explicitly emphasized be the teacher 

(Paper III). This is an example of a point which is not taught, but possibly still experienced by 

the students. 

 This first encounter with algebraic expressions and the further exploration of the initial 

problem gives rise to the emergence of techniques to solve the task, which are subsequently 

validated throughout the chapter through the construction of a technologico-theoretical 

environment. To what extent the technical moment that follows (after the above two) contributes 

to improvement of algebraic techniques can be answered to some extent by the diagnostic test. 

6.3.4 Praxeological change in relation to algebra  

The diagnostic test contains a number of items of the type “reduction with one or two variables” 

“Solve a first-degree equation”. These types of task can also be found in the textbook chapter. 

Table 13 shows that the use of the algebraic techniques is significantly improved in the post-test 

(see Table 10 for the exact success rates).  
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Table 13. Items with significant positive change - all of which utilize algebraic techniques  
Item 
no 

Item Type of task Techniques 

1.7 Reduce 
7𝑎𝑎 − 3𝑎𝑎 = 

Reduction with one 
variable 

Subtraction of terms 

4.8 Reduce 
15𝑎𝑎 + 8𝑏𝑏 − 2 ∙ 4𝑏𝑏 = 

Reduction with two 
variables  

Simplify by collecting and 
reduce same kind of terms 

6.4 Reduce 
  7 + 3𝑥𝑥 + 32− 2𝑦𝑦 + 2𝑦𝑦 − 3𝑥𝑥 = 

Reduction with two 
variables 

Simplify by collecting and 
reduce same kind of terms 

4.7 7𝑥𝑥 − 7 = 13 − 3𝑥𝑥 
           𝑥𝑥 = ______ 

Solve a first-degree 
equation  

Addition, subtraction, 
multiplication and division on 
both side of the equal sign 

7.6 𝑥𝑥 ∙
3
4 =

15
4  

 
     𝑥𝑥 = _____ 

 

Solve a first-degree 
equation 

Addition or subtraction on 
both sides of the equal sign  
or 
Trial-and-error-substitution 

4.5 Rewrite with use of powers 
                 𝑎𝑎 ∙ 𝑎𝑎 ∙ 𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑏𝑏 = 
 

Multiplication of 
variables 

Collect same variables and 
write the answer by using the 
rule of power 

 

It is evident that the students have developed their algebraic techniques for reducing algebraic 

expressions and solving first-degree equations. This corresponds to content emphasized in the 

Japanese textbook.  

Item 4.5, which addresses the use of exponents, merits particular attention as it is related 

with a specific technology-oriented activity of the book (see Isoda & Tall, 2019 p. 71).  Paper III 

describes in more detail how this activity is deployed in one class (episode 3, Paper III). The 

activity involved first realizing that the exponent of 𝑎𝑎𝑛𝑛 increases by 1 when the expression is 

multiplied by 𝑎𝑎. And two students are given the task of finding out what 𝑎𝑎−1 and 𝑎𝑎−2 would then 

reasonably be. The students seem to think that decreasing the exponent by one is equivalent to 

subtracting 𝑎𝑎. Instead of addressing this incorrect reasoning, the teacher lets the students use a 

calculator to explore the problem numerically when 𝑎𝑎 = 2. The students infer that 2−2 = 1
22

 , 

where this assumption is based on the authority of the calculator and not on the algebraic 

reasoning modelled by the textbook (Paper III).  

 Notwithstanding the observation that the theoretical elements of the textbook chapter are 

not fully utilized into the teaching, the evidence presented in item 4.5 suggests that it continues 

to exert a beneficial influence at the technical and technological level.  

The last group of items that were rated as significantly positive is type of task that highlight 

algebra as a modelling tool (table 1). 
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Table 14. Items with significant positive change to algebra as a modelling tool.  

Item 
no.  

Item Type of task Technique 

1.9 Draw or write a story that fits the 
equation: 

𝟐𝟐𝟐𝟐 = 𝟏𝟏𝟏𝟏 

Describe a relationship 
that fits a linear 
equation 

Model the relationship between 
the terms ax and b  

6.8 
Determine the perimeter of the triangle 
                 
              e                 e 

                       e 

Determine the 
perimeter of a triangle 
where all side lengths 
are given 

Addition of the three side 
lengths 

 

Items 1.9 and 6.8 (see figure 14) exemplify the capacity to model simple intra-mathematical and 

extra-mathematical relationships through algebra, as well as the ability to translate algebraic 

equations into practical situations. Despite the relatively simple expressions, it is encouraging if 

the Japanese textbook chapter can contribute to the utilization of algebra as a modelling tool (cf. 

section 3.4) especially when you consider the national test results (cf. section 6.3.1). 

The above test results and case examples indicate that there is a potential for praxeological 

change at student level. As we shall now see the material also contain potential for praxeological 

change at teacher level.  

6.3.5 Mathematics teachers praxeological change  

In the chapter and the textbook in general, there is an explicit distinction between laws (such as 

the commutative property) and conventions (such as the order of terms in expressions).  

This explicit discussion of notation and techniques is not fully utilized in the observed episodes 

(Paper III). This may be because the teachers are not completely certain about the meaning of 

explicit rewriting rules (like exponentiation rules), and when a change in notation is simply due 

to conventions (like 2 ⋅ 𝑥𝑥 = 2𝑥𝑥). Teachers are not used to teach such explanation as they are not 

part of the Danish textbook (Paper II). It may also be that the teachers are, more generally, not 

fully aware of the importance of making technical and theoretical elements explicit. However, in 

the interview with the teachers, there are signs that this potential is beginning to be realized for 

them. The mathematics tutor says that the grade 8 mathematics teaching team has become aware 

of the importance of the explicit notation, and through the use of the Japanese textbook chapter 

they have explored topics that they may have previously overlooked, which is a sign of a 

praxeological change for the teachers (Paper III). 
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7 Discussion 

The above results (section 6) are based on a comprehensive diagnosis of algebraic praxeologies 

currently taught in DLS and problematic algebraic techniques in particular. The discussion of 

these finding will be further informed by the previous research in ATD, school algebra and 

curriculum resources as well as relevant international studies identified through the literature 

review (cf. section 3). In both the diagnostic and the experiment school algebra was considered 

as a modelling tool, which also forms the foundation for a discussion of the particular approach 

to elementary algebra.  

7.1 Algebra as a modelling tool 

Algebra as a modelling tool to model intra- and extra-mathematical system can be grouped into 

three common categories: constructing the algebraic model, rewriting the algebraic model and 

applying the algebraic model (Chevallard, 1989). The same overall structure is currently applied 

to research on Danish school algebra, where a current praxeological reference model for school 

algebra at the transition from lower to upper secondary level consist of three local algebraic 

organizations: set up an algebraic model, substituting in an algebraic model and rewrite (operate 

on) an algebraic model (Cosan, in press). In the dominant model with lower secondary school, 

only substitution in an algebraic model is given substantial attention – whether in subjects 

concerned with algebraic models in extra-algebraic settings (like the computation of circle areas 

by substituting in the model 𝐴𝐴 = 𝜋𝜋𝑟𝑟2) or in activities with equations. Students do not 

authonomously set up algebraic models, and they hardly work on rewriting them (Paper I). Thus, 

for the students there is rarely any visible connection between the algebraic expression and a 

system to be modelled, which is emphasized as essential to school algebra as a modelling tool by 

Strømskag & Chevallard (2022).  

 In the DEM for lower secondary schools, applying the algebra models consists mainly in 

substitutions of one or more variables by integers. In general, the logos blocks do not include 

“formal mathematical definitions and axioms” (Paper I). If we look at CO, one could easily get 

impression that algebra as an intra-mathematical and especially extra-mathematical modelling 

tool would be required or at least encourages in DLS mathematics (cf. Section 6.1.1). But the 

teachers do not have concrete support to realize such an interpretation, in the form of resources 

for their teaching and occasions to learn how to use them.  



66 

 

 According to the research and innovation program by Strømskag & Chevallard (2022) 

students should start by looking at a system and a related question with mathematical elements. 

They should then create a model of the system tailored to the questions, using elementary 

algebra and including relevant parameters. As they work through the model, students should 

focus on finding an answer to the question. The key is that during this process students naturally 

encounter and explore algebraic concepts, refine their understanding and learn to use these tools 

efficient (Strømskag & Chevallard, 2022). This structure of a tailored opening problem, which 

leads to a study process the goes beyond the simple solution of a single mathematical problem 

and ends with a mathematical organization, is precisely what is contained in the Japanese 

textbook chapter (Paper II). This textbook structure where algebra is used as a modelling tool, is 

not generally used.  

 In the study of the most widely used textbooks in Spanish secondary schools, the 

researchers found that the content related of algebra is mainly focused on solving equations, with 

an “introduction to algebraic language” (Munzón et al. 2015). Algebraic techniques are learnt 

implicitly through reference to arithmetic and number sense, although algebraic arithmetic is 

governed by different syntactic rules than arithmetic. Whereas in arithmetic you often simplify 

each operation you do before moving to the next, in algebra you can benefit from 

“complexifying” the calculations and manipulations you do (Munzón, et al. 2015) 

 In Spanish schools the teaching and learning of elementary algebra focuses on students 

learn to write, factorize and simplify expressions as an end itself not as a tool for problem 

solving (Munzón et al. 2015). The same situation was described by Chevallard (1989) where 

analysis of the manipulation of algebraic expressions in France college (LSS) revealed that there 

was no mathematical aim beyond the training of algebraic skills and the rules of the algebraic 

manipulation were unmotivated and used as procedures for the sake of the use (Chevallard, 

1989).  

 The current teaching of school algebra in DLS maintain the same limitations previously 

described for algebra in French and Spanish schools (Munzón et al., 2015).  

Formal learning cannot replicate all the manipulations students need when using algebra as a 

modelling tool. This results in a vocabulary focused on specific operations (e.g., calculate, 

simplify, develop, factorize), which not only fails to teach fundaments algebraic skills but also 

prevents students from learning how to choose the most appropriate transformation for a given 

problem (Munzón et al. 2015). 
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 On the one hand, the competence-based and spiral curriculum give opportunity for 

praxeological change over years in study process where the moment of the first encounter with 

T, the moment of exploration of and emergence of a technique 𝜏𝜏 can be part of one grade level 

and the theory block can be part of later grade level. It requires that the study process with the 

moment to build the technological and theoretical block are based on the previous study process 

and praxeologies. In the selected algebra lessons, students discuss the difference between the 

words “reduce” and “solve” (cf. section 6.2). It reflects the connection between the type of task 

and the corresponding technique to solve the task, where it is crucial for the students to define 

the type of task to apply the corresponding technique.  

7.2 The use of foreign textbook material  

The article “A comparative study of didactic moments in a first chapter on algebra in Danish and 

Japanese middle school textbooks” (Paper II) highlights the broad opening-problem as a catalyst 

for creating a general algebraic model of the system tailored to the questions posed by the 

textbook. A process that invites the students to naturally encounter and explore algebraic 

concepts by including relevant theoretical elements, which contributes to refine their 

understanding and learn to use these tools efficient. These conditions fulfil the requirements for a 

study process that contributes to e more “authentic” study and use of algebra in schools, as 

described by Strømskag & Chevallard (2022).  

 If we compare the conditions and constraints of our project using Japanese textbook 

chapters with the experience of American Schools adopting Singaporean mathematics textbooks, 

there are differences to consider. While the Schools in U.S. used the entire textbook system, in 

this project we used only a selected chapter. While the use of the Japanese textbook chapter was 

intended to help in the transition from arithmetic to algebra and fill theoretical “gaps” in the 

Danish system, one of the challenges with the Singapore textbook system was that it did not 

fulfil the official goals for teaching.  

 By selecting specific chapters from a textbook that follows a curriculum with a clear, 

coherent progression, it is possible to adapt the material into a spiral curriculum structure, where 

topics are revisited with increasing depth and breadth. On the other hand, focusing on a single 

chapter in isolation misses the benefits of this progression, which involves building on prior 

knowledge. Or even worse, the use of the isolated chapter becomes difficult or impossible 

because of students insufficiently solid or extensive prior knowledge. 
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 The experiment with the use of Japanese textbooks material took places in DLS that could 

be described as average in terms of number of students in the classes, students’ well-being 

amount and the percentage of students who went on to secondary school, but “below the national 

average” in terms of the compulsory mathematics test (Paper I). In the experiment the use of 

Japanese materials did not require any special institutional conditions, in contrast to the US 

schools, where it was concluded that replication of the Singapore successes would require major 

reforms of the US school mathematical system (Ginsburg et al. 2005). Conversely, through 

teacher interviews, we gain insight into the teachers’ discussions about the mathematical and 

didactic content of the material, which has been a requisite component of the teachers’ 

preparation for teaching with the textbook chapter in the experiment. It would be beneficial to 

pursue these institutional conditions (and constraints) in future research projects investigating the 

utilization og Japanese textbook material in DLS.  
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9 Conclusion 

The aim of this study was to explore the current algebraic praxeologies taught in Danish lower 

secondary schools, focusing on the extent to which the teaching provides a systematic 

progression at the level of theory in the transition from arithmetic to algebra. After diagnosing 

what algebraic techniques are particularly problematic for Danish students at lower secondary 

level, we have selected textbook material for a teaching experiment, to overcome these 

challenges and investigate the conditions and constrains when using research-based textbook 

material in the transition from arithmetic to algebra.  

9.1 The status of school algebra in Danish lower secondary school 

A fundamental viewpoint from the outset of this project has been to consider external and 

internal didactic transpositions of algebra as intimately connected, with the textbook being an 

important interface. The textbook is crafted in and by the external didactic transposition, but it is 

also, even materially, present in the classroom.  

 The teaching of school algebra in DLS is based on the premise that algebra should be 

presented as a seamless continuation (if not almost part of) arithmetic. In the textbooks, algebraic 

symbolism is introduced relatively early, also in contexts where it is not strictly necessary (cf. 

Paper II). Algebraic expressions appear in ready-made models (“formulae”, e.g. for the 

circumference of a circle in terms of its diameter) and in equations where the solution is to be 

found through trial-and-error (substitution of small natural numbers). In terms of the levels of 

algebraization this corresponds to the first level where calculation programs are presented 

algebraically and used (but not constructed, questioned or modified). Another specificity is that 

the numbers used in these calculations’ programs are almost invariably integers (and mostly, 

positive integers). These restrictions are not mandated by the official directives (CO) but are 

implicitly present in the equally official final written exam, where they are followed. The CO do 

not formulate specific requirements in terms of algebraic techniques or theoretical notions (like 

commutative law, inverse operation etc.), and indeed coherent and precise algebraic discourse is 

rare or absent both in the textbooks and in observed teaching. Technical work, for instance with 

solving equations or handling parentheses, then come to rely on informal language and rules. At 

the final exam, relative few (often less than 50%) students succeed with algebraic task of the 

limited type described above. In the diagnostic test, a wider area of arithmetic and algebraic tasks 

was proposed, also in order to gain closer insights into the techniques and logos mastered by the 
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students. A main outcome was that some of the students cannot even access the first level of 

algebraization because of difficulties with arithmetical praxeologies, like viewing longer 

computations structurally and not as step-by-step instructions. These difficulties are by no means 

universal: some students can solve items in the diagnostic test which go beyond the official 

requirements as implicitly formulated through the final written exams. Exceptional items like the 

one discussed in the introduction to Paper I also show that almost nobody (3%) get to master 

relatively basic rewriting rules for algebraic expressions. 

9.2 The method and meaning of the diagnosis 

The results outlined in previous section relies on a variety of data sources: the official program, 

textbooks, classroom observations, and results from a test based on an elaborate REM. The 

connected analysis of these is made possible by the explicit praxeological reference model and 

by the theoretical situation of the various data in relation to the didactic transposition. The 

outcome is both to exhibit the (normally implicit) DEM of algebra in the institution (DLS) and 

its consequences in terms of the teaching and learning that is realized within the institution. The 

systemic viewpoint is necessary to identify relations and effects among the many elements which 

could otherwise be seen as independent factors or symptoms of “the algebra problem” – which, 

in a vague sense, is “felt” by neighboring institutions. A diagnosis of the kind realized in Paper I 

does not aim to confirm such vague impression but to collect, analyze and combine evidence that 

can provide a sharper picture than the institutional beliefs. The diagnosis can also serve as the 

foundation and context of interventions like our experiment with curriculum import. 

9.3 The potential of curriculum import 

A positive condition for our experiment was the fact that at the school where the Japanese text on 

initial algebra was experimented, the school had adopted a single textbook system for lower 

secondary mathematics; the teachers habitually combined resources (text, exercises) from 

different sources, including the internet. The mathematics teachers also shared such materials 

among them and frequently planned parallel teaching together. We do not know how common 

these conditions are in DLS. It certainly made it easier to have a whole team of (five) 

mathematics teachers volunteer to work with the Japanese material for about a month, and to do 

so collaboratively and simultaneously in all three grade 8 classes of the school. These positive 

conditions may not be generally available, and we do not know to what extent they were 

instrumental for the outcomes observed. It made us have more direct access to their didactical 
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rationales and methods. On the other hand, the school was not in any way a privileged context in 

terms of general parameters like grades, social context etc. 

In summary, the teachers used the inductive approach of the chapter, with the challenging launch 

question supporting many points along the way, beginning with the students’ work to model 

what appears initially an arithmetic problem.  

 The teachers also appreciated and effectively used the parts of the text that discuss new 

notational conventions in algebra (e.g. 2 ⋅ 𝑥𝑥 = 2𝑥𝑥 but NOT 𝑥𝑥 ⋅ 2 =  𝑥𝑥2) explicitly, rather than 

leaving them to be assimilated tacitly. 

 There are other elements which were realized less successfully. Generally speaking, they 

relate to theoretical aspects of algebra which are not habitually taught in DLS, like 

• situations where students should discover or derive a theoretical point from a pattern of 

examples, like when students work on the definition  𝑥𝑥−𝑛𝑛 = 1/𝑥𝑥𝑛𝑛 for positive integers 𝑛𝑛; 

• establishing clear connections between abstract theoretical laws (like the distributive) and 

examples as well with previous knowledge from arithmetic. 

• make full use of the structure of the chapter so that the cumulative progression of the 

material becomes explicit in the teaching. 

 As one could expect we identified both potentials and obstacles in the experiment. On the 

side of the teachers, the main potential was probably that they explicitly say they learnt new 

ideas about teaching and algebra from using the material. On the student side, the diagnostic test 

suggest that they advanced even in areas (like positive integer exponents) where the teaching did 

not follow Japanese didactic principles for managing students’ problem solving. We cannot, 

however, in any way claim that their outcome from the experimental teaching was better than it 

would have been otherwise; so, results are more about the phenomena, conditions and constraints 

to expect. 
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Paper I 

Diagnosing the state of lower secondary algebra  

DIAGNOSTIC DU STATUT DE L’ALGÉBRE AU NIVEAU DU COLLÈGE 

Résumé – Étant donné l’importance de l’algèbre scolaire pour l’éducation post-secondaire, il 

paraît naturel de se demander comment les outils de la didactique peuvent servir à l’évaluation 

des pratiques et des résultats liés à l’algèbre dans une institution scolaire donnée, et des relations 

entre ceux-ci et les objectifs officiels? Dans cet article nous proposons une approche à effectuer 

un tel diagnostic à la base de la théorie anthropologique du didactique, en cernant surtout la 

distance qui sépare les modèles dominants et épistémologiques de l’algèbre scolaire. Pour 

démontrer cette approche nous examinons le cas de l’algèbre au niveau du collège au Danemark. 

Nos résultats sont lié au phénomène du « dis-algébrisation » des mathématiques scolaires. 

 

Mots-Clés : en français sans majuscules séparés par des virgules. 
 

DIAGNOSING THE STATE OF LOWER SECONDARY ALGEBRA 

Abstract – Given the importance of school algebra for later education, it is natural to ask what 

tools didactics offers to evaluate the practices and results related to algebra in a given lower 

secondary school institution, and the relations between the official goals and praxis. In this 

paper, we outline an approach to set up such a diagnosis, based on the anthropological theory of 

the didactic, and focusing on the distance between dominant and epistemological models of 

school algebra. To demonstrate this approach, we use the Danish lower secondary school as a 

case. The key findings are related to the phenomenon of “dis-algebraization” of school 

mathematics.   

Key words: School algebra, curriculum, the anthropological theory of didactics, didactic 

transposition, reference epistemological model.  
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Introduction  

It is a longstanding theme of research into algebra teaching in Western school systems that 

current practice involves a narrow focus on the training of isolated techniques related to notation 

and formulas, while neglecting to present algebra as a modelling tool (Herscovics & Linchevski, 

1994).  Yet, modelling problems with algebra and evaluating and recognising algebraic models is 

fundamental to algebra learning (Jupri & Drijvers, 2016). School algebra and algebra as a 

modelling tool has been central to the work of Chevallard (1985, 1989). Subsequently  Bolea et 

al. (2001, 2004) and Ruiz-Munzón et al. (2013, 2020) describes school algebra and algebra as a 

modelling tool in different school contexts, based in the anthropological theory of didactic.  

Kieran (2007) provides a historical overview of the evolution of school algebra. And recently, 

Strømskag and Chevallard based on historical examples emerge with “A plea for a new 

curriculum” (Strømskag & Chevallard, 2022), where algebra is a modelling tool.  

Analysing school algebraic practices and curricula is a complex endeavour. Grugeon 

(1997) addresses this complexity by offering a multidimensional model to analyse algebraic 

technique and theory in the transition between vocational and general high schools, in France. 

By operationalising the model, Grugeon analyses the institutional relationship of students to 

algebra and how the discrepancies between the institutions affect the students. It is known that 

lower secondary school algebra can be considered a main interface between primary school 

arithmetic and higher mathematics (in particular, calculus) as encountered in upper secondary 

school and higher education (Loveless, 2013).  

 This is also the case in Denmark where students’ failure with basic algebra as taught in 

lower secondary school is identified as a central cause for widespread and increasing failures in 

mathematics at the high stakes exams in high school (Grønbæk et al., 2017); however, as we 

shall see, the discrepancies are more acute than in the classical cases, as our analysis will show 

that large parts of basic algebra are hardly taught. This motivates our use of Danish lower 

secondary school as a case. In line with  Grugeon (1997), the intention of this article is to 

provide an analysis model with instruments to achieve a coherent analysis of the status of algebra 

in a given contemporary institution, where the goals related to algebra are very modest. In this 

way, the article contributes to diagnose the state of lower secondary algebra by applying the 

same theoretical foundations as Chevallard et al., but in a context which is different from that of 

the 1990s.  
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Denmark as case 

Due to the focus on technical skills, the problem with basic algebra is often diagnosed in terms 

of students’ shortcomings with computations. However, these also have a theoretical dimension, 

as the following example illustrates. We consider a question from the 2017 national written exam 

after Grade 9 (15–16-year-old students). The question is the last in a series of questions, in which 

𝐾𝐾𝑛𝑛 designates the number of squares in a certain number pattern, which most of the exercise is 

concerned with exploration of number patterns. However, the last question does not refer to this 

context and states: “You must show that the formula 𝐾𝐾𝑛𝑛 = 𝑟𝑟(𝑟𝑟 − 1 + 𝑛𝑛) can be rewritten as 

𝐾𝐾𝑛𝑛 = 𝑟𝑟(𝑛𝑛 − 1) +  𝑟𝑟2”. 

 Here, the result is given – what is required is to deliver a justification. Only 3% of the 

55,260 students sitting this national exam got full marks for this question – and that only 

required students to provide ‘correct transformations with at least one intermediate result’, such 

as 𝑟𝑟2 + 𝑟𝑟(−1 + 𝑛𝑛). In this case, what is really required is a simple use of the distributive law, 

the meaning of exponents, and the commutative law for addition, but full points did not require 

explicit reference to such theoretical ideas. While (Chevallard, 1985, 1989), thirty years ago, 

described a practice where the rules for manipulating algebraic expressions are unmotivated and 

rewriting becomes an end in itself rather than a means to solve the problem, the requirements are 

certainly more modest. Since then, Bolea et al. (2001, 2004), Bosch (2015), Grugeon (1997), 

Ruiz-Munzón et al. (2013, 2020), Strømskag and Chevallard (2022) have continued research on 

the didactic problem of school algebra, all based on the anthropological theory of didactics 

(ATD), focusing on ideas to give it meaning. 

 In this case, we also consider school algebra as a modelling tool (Strømskag & Chevallard, 

2022) – both as a tool that models intra-mathematical praxeologies such as calculation patterns, 

and as a tool to study of systems in other disciplines, such as physics and biology (Bolea et al., 

2001). 

The example above indicates that the didactic challenges with school algebra that Chevallard 

addressed in the eighties are even more acute today, at least in the case of Danish lower 

secondary school. However, how can we go beyond isolated examples to provide a 

comprehensive diagnosis of the state of students’ algebraic competences, based on newer tools 

of ATD, such as praxeological organisations? This is the focus of the present paper. 
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Theoretical framework 

The anthropological theory of the didactic (ATD) has emerged as a theory of mathematics 

education (Chevallard, 2019). Within research based on ATD, school algebra has been the object 

of many studies, leading to significant new insights into the algebra problem (Ruiz-Munzón et 

al., 2013). A central feature is the use of praxeologies to model school mathematical activity, 

described in more detail below. To describe how knowledge is disseminated and developed in 

different institutions, ATD continues to use the more classical notion of didactic transposition 

(Chevallard & Bosch, 2014). 

The didactic transposition 

The process of didactic transposition is, in the present form of the theory, a way of describing the 

transformation of praxeologies (described below) from being produced as scholarly praxeologies 

in society (often historically), to being selected and designed to be taught by persons from the 

noosphere, ‘the sphere of those who “think” about teaching’ (Chevallard & Bosch, 2014). The 

‘knowledge to be taught’ is subsequently transformed into taught praxeologies at schools 

(teaching institutions) and finally becomes learned praxeologies. This transposition works with 

the deconstruction and reconstruction of knowledge, influencing each other and the institutions 

they take place in. 

 The Danish school curriculum is formulated and published by the Danish Ministry of 

Education. The praxeologies undergo a transposition from one institutional setting to another, for 

example, the transposition from curriculum to the national written examination after lower 

secondary school. Textbook authors adapt both into text and exercises to be worked on by 

teachers and students. In the transposition process, the praxeologies will be adopted and changed 

according to various needs and values of various agents (Chaachoua et al., 2019). This part of the 

transposition is called external didactic transposition (Bosch et al., 2021). 

 The internal didactic transposition is the transposition of knowledge to be taught to taught 

knowledge and the transposition of taught knowledge to learned knowledge (Chevallard & 

Bosch, 2014). As a crucial step of internal didactic transposition, we can mention teachers’ use 

of textbook material in actual teaching, with related conditions and constraints. Another step is 

from students’ participation in a lesson to the learning results that can be observed in students’ 

actions in other contexts, such as an exam or test, with the learned knowledge being to some 

extent detectable from their performance at the final exam. 
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The study of the external and internal didactic transposition processes of Danish school algebra 

is used for modelling the praxeologies in an epistemological reference model. 

Praxeologies 

In ATD, human knowledge and practice are modelled by praxeologies (Chevallard, 2019). A 

praxeology consists of types of tasks, techniques, technology, and theory (Bosch, 2015). The 

‘practical block’ or praxis is formed by the type of tasks, indicated as 𝑇𝑇, and the corresponding 

technique, indicated as 𝜏𝜏 used to solve 𝑇𝑇 (Barbé et al., 2005). 

 The ‘theoretical block’ or logos consists of technology, indicated as 𝜃𝜃, (discourse on the 

techniques, such as how they work and what tasks they can solve), and theory, indicated as Θ 

(general discourse that unifies and justifies technologies, both formally and informally). This 

means the techniques for performing tasks are explained and justified by a ‘discourse on the 

technique’ called technology; taking this discourse to a more abstract level yields mathematical 

theory, to validate the technological discourse and to connect entire praxeologies (Bosch, 2015). 

The anthropological approach assumes that any task, or the resolution of any problem, relies on 

the use of techniques, even though the techniques are hidden or difficult to describe (Barbé et al., 

2005). 

 It is convenient to understand a mathematical praxeology as a type of mathematical 

organisation (MO), where a point MO contains only one type of task T and a corresponding 

technique 𝜏𝜏 (Bosch & Gascón, 2006). When a set of punctual MOs is explained by using the 

same technological discourse, they form a local mathematical organisation (LMO), characterised 

by this technology. Likewise, LMOs sharing the same theoretical discourse form regional 

mathematical organisations (RMOs). 

Punctual MOs can be integrated in different LMOs, and similarly, LMOs can be integrated in 

different RMOs (Barbé et al., 2005). 

Epistemological Reference Model (REM) 

In ATD, the reference epistemological models (REMs) are formulated in terms of praxeologies 

(García et al., 2006). In the present paper, the REM serves to present the ‘researcher’s model of 

school algebra’. The model is based on theoretical and empirical data from analyses of 

mathematical teaching and learning processes, textbooks and other didactical phenomena, in a 

wide range of institutions. The model explicitly includes the concrete questions, materials and 
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processes used in mathematical activities as a raison d’être of the mathematical content (Ruiz-

Munzón et al., 2013).  

 The REM has the function of a working hypothesis for the researcher and provides 

opportunities to include and compare different praxeologies related to school algebra (Bosch, 

2015). 

The Dominant Epistemological Model (DEM) 

The dominant epistemological model (DEM), by contrast, shows the dominant way of describing 

a phenomenon within an institution, including its official raison d’être (Lucas et al., 2019). The 

DEM of school algebra includes the domain of algebra knowledge to be taught, and the type of 

algebra activities that are emphasized in lower secondary schools. The DEM of knowledge to be 

taught can be informed by the curricula, textbook material, and written national exams, to exhibit 

the dominant praxeologies. 

 It is also important to consider why a particular DEM exists. In that way, the REM is 

detached from the DEM and provides the opportunity to exhibit phenomena and differences 

between praxeologies that are far from evident. According to Ruiz-Munzón et al., (2013), it is an 

important requirement for a REM not to adopt any of the institution’s prevalent viewpoints 

uncritically, as it must serve to question them. Bosch (2015) argues that the construction of 

explicit reference models provides opportunities to ask research questions that go beyond the 

assumptions held by the school institution itself. As a central feature, the empirical data used to 

construct the DEM and the REM should come from the different institutions which are involved 

in the didactic transposition of knowledge (Ruiz-Munzón et al., 2013). 

Didactic moments 

To analyse internal didactic transposition, ATD uses the notion of didactic moments (Bosch et 

al., 2020): the first encounter with the type of task 𝑇𝑇, the exploration of 𝑇𝑇, with emergence of a 

first technique 𝜏𝜏 used to solve 𝑇𝑇, the moment of constructing the technological and theoretical 

block [Ɵ/Θ], the moment of refining the technique(s), and the moment of the institutionalisation 

of the entire praxeology that has been constructed (Bosch et al., 2020). 

Level of algebraization 

Algebra serves as a modelling tool to model intra- and extra- mathematical systems through an 

algebraization process (Bolea et al., 2001, 2004). The process of algebraization is a 

mathematical-didactic phenomenon, that starts in primary school and continues through 
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secondary school and university. There are, thus, different levels of algebraization, 

corresponding to still more advanced algebraic praxeologies. Bolea et al., (2001) and Ruiz-

Munzón et al., (2013, 2020) work with algebraic modelling and levels of algebraization of a 

mathematical organisation in their respective REM. In the three-stage model of algebraization by 

Ruiz-Munzón et al., (2013, 2020) arithmetic can be identified as the domain of calculation 

programmes (CP). The first stage of algebraization occurs as learners consider the CP as an 

object and not only as a process. The second stage is introducing letters as parameters and 

unknowns, to model the relationship between CPs. The third and last stage of the algebraization 

process appears when the number of arguments of the CP is not limited, and the distinction 

between unknowns and parameters is eliminated (Ruiz-Munzón et al., 2020).  

Research questions 

The didactic transposition, the notion of praxeologies and didactic moments, and the three-stage 

model of algebraization provide the theoretical foundation for our approach to diagnose the state 

of algebra in lower secondary schools. Our main contribution is to combine these elements to 

achieve a more coherent analysis of the status of algebra in a given contemporary institution. 

 The aim of this paper is to demonstrate how the theoretical tools introduced above can be 

combined and deployed to produce a diagnosis of the state of school algebra within a given 

school institution, with Danish lower secondary school (DLS) as a case. 

The case itself may not be of great importance to reader, but the methodology – involving many 

data sources to model the DEM and REM – is generalizable, as we will argue after presenting 

the case. 

To investigate our case, the following research questions have been formulated: 

• What is the status of algebra in DLS, in terms of knowledge to be taught, taught knowledge, 

and learnt knowledge?  

• How is algebra related to other domains such as arithmetic and geometry? What ruptures and 

inconsistencies are observed? To what extent is algebra used as a modelling tool? 

• How can students’ difficulties (such as the example of the national final exam, cf. 

introduction) be explained by the answers to the previous questions? What links can be made 

with previous studies of the algebra problem at lower secondary level? 

The main advantage of the methodology proposed here is the connected analysis of all these 

questions, supported and enabled by the REM and DEM, as we proceed to explain in the next 

section. 
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Methodology 

Reference and Dominant Epistemological Models 

To answer the research questions, we will use the notions introduced above as theoretical 

framework to build the dominant epistemological reference models within DLS. The DEM will 

be compared to the REM to extract the phenomena that differ, and result in a diagnosis of school 

algebra in DLS. 

 

 
 

Empirical evidence used to model the external didactic transposition 

The description of algebra in the current national programme of DLS, the so-called ‘common 

goals’ (Education, 2019b), will be analysed to model algebra knowledge to be taught in DLS. 

The first step in the development of the DEM was to determine the topics in the national 

programme of DLS, which include elementary algebra and relate to algebra as a modelling tool 

and the three levels of algebraization (Ruiz-Munzón et al., 2013). The national programme of 

DLS, the written examination after lower secondary school for June 2019 and June 2021 

(Education, 2019a) and textbook material by Hansen et al., (2015, 2016) were analysed. The 

description of the praxeologies will form the DEM of the knowledge to be taught. 

 The examination after DLS from 2019 was chosen because we have detailed data from the 

national results. The 2021 examination was selected to include a wider range of tasks. The 

textbook material by Hansen et al., (2015, 2016) was selected for analysis because it is from one 
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of the most common Danish textbooks and is used in the schools where the lessons were 

observed. 

Internal didactic transposition 

We used classroom observations to gain insight into the school algebra actually taught. Two 

different teachers in three different classes were observed for 12 lessons in the second and fourth 

weeks of January 2022. We used participant observation (Emerson et al., 2001). Field notes were 

recorded during the teaching and combined with transcriptions of the classroom dialogue. The 

number of students who participated in the classes varied from 16 to 26 students, due to the 

COVID-19 pandemic. 

 We focused on a specific and characteristic episode where Grade 8 students were asked to 

explain how to solve an equation of the form Ax + B = Cx + D. The analysis was based on the 

ATD notion of didactic moments (Bosch et al., 2020). 

Diagnostic test 

To gain insight into the knowledge actually learned by students in DLS, we developed a 

diagnostic test tool to examine students’ technical and theoretical knowledge of elementary 

algebra (Author, 2022). The test is based on the DEM, developed from analysis of textbook 

material from grade 7 and 8 (Hansen et al., 2015, 2016), the written examination after DLS and 

draws on a master’s thesis on middle school arithmetic (Cosan, 2021). The items to test 

techniques are based on punctual praxeologies, consisting of simple tasks of the type which the 

techniques solve. For example, the type of task ‘Solve first-degree equation of the form Ax = B ’ 

(by hand, i.e., using arithmetic operators) can be solved by the technique ‘divide by A to obtain 

x = B
A
’. To test students’ level of technology and the use of algebra as a modelling tool, open-

answer questions such as ‘Draw or write a story that fits the equation 2x = 10’ are also included. 

To gain insight into the student’s algebraic theory, more theoretical questions, such as ‘Explain 

why a − (−a) = 2a ’ are included in the test. The test involves systematic variations of the items 

to control for the significance of such variations. 

 The intention is to diagnose the state of DLS, grade 7-9, age 13-16. Therefore, four Grade 

7 classes with a total of 69 students, and one Grade 8 class with 22 students were selected to take 

the 45-minute unaided paper-and-pencil diagnostic test in January and February 2022. One 

Grade 7 class and the Grade 8 class were used for observation. The remaining classes came from 

other schools in the suburbs of Copenhagen. The observation was agreed to by the teachers of 



11 

 

the classes (no teacher refused the request, so we consider that the four classes are not a biased 

sample, except for their urban location). 

Results 

From the didactic transposition process, we extracted the phenomena in the DEM related to the 

praxeologies, the level of domains and the use of algebra as a modelling tool. These phenomena 

were analysed and linked to the REM, in view of identifying the distance between the DEM and 

the REM. 

A Reference epistemological model for school algebra 

In general, our REM states that modern algebra is a practical and theoretical tool to carry out 

modelling activity related to any school mathematical praxeology (Bosch, 2015). Strømskag & 

Chevallard (2022) have argued for a revision of the curriculum to cover the potential of 

elementary algebra as a modelling tool. For instance, this helps one to better understand the role 

of algebra in relation to arithmetic – when considering algebra as a ‘tool to model arithmetic 

praxeologies’. 

 Arithmetic can be identified as the domain of calculation programmes (CPs) (Ruiz-

Munzón et al., 2013). An example of a CP is the stepwise implementation of arithmetic 

operations that is used to solve classic arithmetic problems, such as the following item from the 

DLS written examination (Education, 2019a) opg. 1). Ellen wants to buy a bicycle, a helmet, and 

a locker for the bicycle. A drawing shows the prices from the bike shop, where a lock costs kr 

249, a helmet kr 499, the blue bike kr 2750 and the red bike kr 3999. The first question is: ‘How 

much money do the bike helmet and bike lock cost in total?’ 

The answer to the question is given by the CP 249+499. To calculate how much the red bike 

costs more than the blue bike, the CP 3999–2750 is used. The different CPs used to answer these 

questions are the sum and difference (of two values), which can be algebraized as an algebraic 

expression (of two variables): x + y and x − y. In that way, the CP is an intermediate step of 

algebraization in the mathematical activity, and the first stage of algebraization occurs when the 

learner considers the CP as an object and not only as a process (Ruiz-Munzón et al., 2020). 
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Figure 2. Item 5.1 in the Diagnostic Test 

 

Figure 2 is an example of a task in which it is an advantage to rewrite down the CP before 

executing it, for example, 17 + 29 + 132− 52 + 52 − 29 → 17 + 29 − 29 + 132 → 17 +

132 → 149. This practice provides an opportunity to solve the task by the technique of 

‘simplify[ing] the expression by applying the opposite’, rather than simply deconstructing it into 

successive steps. The techniques used by the students will be discussed later in the article. 

The second stage of algebraization is introducing letters as parameters and unknowns to model 

the relationship between CPs. 

 
Figure 3. Item 4.7 in the Diagnostic Test 

 

Figure 3 presents an example of the relation of a CP, that is, equations with one unknown and 

one parameter, which can be reduced to a one-variable equation. The potential algebraization of 

a problem into an equation is shown in Figure 3, for the problem: ‘7 pieces of tape minus 7 units 

are equal to 13 units of tape minus 3 pieces. How long is a piece of tape?’ The solution is a 

relation between pieces and units. This kind of relation and algebraization process is the central 

part of the second stage of algebraization. The extent to which students can solve this type of 

task will also be discussed later in the article. 

The third stage of the algebraization process does not distinguish between variables and 

parameters and there is no limit to the potential number of variables of the CP. This stage of 

algebraization includes the production, transformation and interpretation of formulae and it is, in 

general, less prevalent in lower secondary schools (Ruiz-Munzón et al., 2013). 

 In this case, we consider school algebra as a process of algebraization and use the three-

stage model of the algebraization to set up the REM (Ruiz-Munzón et al., 2013). The three-stage 

model can be used as a tool to detect and analyse what kind of school algebra is taught and learnt 

(Bosch, 2015).  
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School algebra to be taught according to the curriculum  

In Denmark, the so-called ‘common goals’ for mathematics (Education, 2019b), constitute the 

official directives for all primary and lower secondary schools. It is a competence-based 

curriculum, in which generic mathematical competences are combined with three mathematical 

topics, numbers and algebra, geometry and measurement, and statistics and probability.  

The overall aim for arithmetic and algebra in ‘common goals’ for DLS, is that ‘the student can 

apply real numbers and algebraic expressions in mathematical investigations’ (Education, 

2019b). 

The mathematical organisation of the algebraic domain in the ‘common core’ is divided 

into three RMOs: ‘Equations’, ‘Formulas and algebraic expressions’, and ‘Functions’. Each 

RMO is subdivided into LMOs, which consist of two objectives, one relating to techniques and 

the other to knowledge about the techniques.  

Table 1. Common core of the algebraic domain for DLS (Education, 2019b) 
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At the first level of ‘Formulas and algebraic expressions’ (RMO2) in Table 1 the aim is that ’The 

student can describe relationship between simple algebraic expressions and geometric 

representations’ and ‘The student has knowledge about geometric representations of algebraic 

expressions’(LMO2,1), respectively. At stage three in RMO2 the LMO2,3 is ‘The student can 

compare algebraic expressions’ and ‘The student has knowledge about calculating rules for real 

numbers’ (Table 1).  

 The LMO2,1 and LMO2,3 relates to algebra as a modelling tool (Bolea et al., 2001), and 

LMO2,3 can be interpreted as the first stage of algebraization (Ruiz-Munzón et al., 2013, 2020). 

In addition to the RMOs, there is a ‘focus of attention’ for the lower secondary degree Grades 6 

to 9, namely that ‘The student can substitute numbers for variables in a simple formula’ 

(Education, 2019b). As there are no example assignments, the dominant algebra praxeology 

related to the ‘focus of attention’ in the common goals consists of a praxis block, T: Solve a 

simple equation by substitution with the corresponding technique, τ: Substitution of integer. The 

logos block can be described with the technology.  

θ: Methods to model and solve equations, and the level of theory is Θ: Knowledge of how to 

model and solve equations. General descriptions that do not tell teachers exactly what to teach. 

In practice, the knowledge to be taught is determined by textbooks and also by the centralised 

national exam, from which earlier items are frequently used by teachers as ‘training material’ for 

students in the final years of DLS. Both sources provide a great deal of information about the 

knowledge to be taught, according to the resources teachers use to organise their teaching. 

Written examination praxeologies  

In the paper-and-pencil written examination without aids (after grade 9), from June 2019 and 

June 2021, Item 6.1 (REF 2019) reads simply: ‘40 + ____ = 50 + 15’. This is an example of the 

first stage of algebraization in the written examination after DLS, since it can be solved by 

substitution. In fact, substitution is the dominant technique at the exam. The task is a variation of 

the algebraic type of task T: solve A + x = B + C. The fact that the item is not given in this 

standard algebraic form could reflect that the institution does not expect all pupils to master this 

form. 

 As an example of the second stage of algebraization, we considered the items in Table 2 

(from the part of the exam where the students do not have access to digital tools). 
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Table 2. Written Examination after DLS (January 2019) 
Item Task 

Solve the equations 

Type of task Technique 

11.1 3x + 1 = 10 

x = 

T: solve Ax + B = C 

(NB: A ≠ 0) 
τ: x =

C − B
A

 

11.2 5x − 3 = 2x + 18 

x = 

T: solve Ax + B = 

Cx + D 

(NB: A ≠ C) 

τ: x =
D − B
A − C

,   

A ≠ C 

11.3 2(x + 4)
x

= 6 

x = 

T: solve 
P(x)
Q(x) = A   

 (P, Q first degree 

 polynomials) 

τ: substitute 

 xϵ{1,2,3, . . }  

 

 

 

 

In item 11.3 (Table 2), the students are expected to solve the equation by substitution of small 

positive integers. The substitution by two integers succeeds, and the students may be satisfied by 

finding one solution, as they never encountered equations with more than one. The use of 

substitution as a technique to solve equations implies that the algebraization remains at the first 

stage. The second stage of algebraization – relying on using operators on expressions and 

equations – is not required. 

 In Table 2, the type of task T and the corresponding technique τ form a point-praxeology 

and a part of the LMO1,2 ‘solving equations’ with the shared technological discourse 

‘Manipulation of variables as if they were numbers’. The LMO is a part of the RMO (Chaachoua 

et al., 2019). In this case, the LMO ‘Solving equations’ is a part of RMO1 ‘Equations’ and forms 

the DEM. 

 The third stage of algebraization, which includes the production, transformation and 

interpretation of formulae (Ruiz-Munzón et al., 2013), is rarely present in the written 

examination after DLS. When there are questions that require this third stage, the items are 

highly scaffolded, as the example mentioned in the introduction illustrates. 

To sum up: the goal of ‘The student can substitute numbers for variables in a simple 

formula’(Education, 2019b) dominates the final exams at DLS, and students are rarely presented 

with tasks that go beyond the first step of algebraization. Algebra as a modelling tool is implicit 

described in the common core and not specified through assignments.  

School Algebra to be Taught according to Textbook Material 

One of the most common textbook series used in DLS is Kontext+ (Hansen et al., 2016). We 

chose two single textbook exercise and a theoretical section as a case for the praxeological 
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analysis. The purpose of this is to illustrate the difference between the intended techniques and 

theory according to the assignment text (DEM), and the variation of techniques to solve the tasks 

and the level of theory according to the REM. 

 A typical textbook example from grade 8 is shown in Figure 4. In a. to d. the task is to 

‘Reduce the expression as much as possible’ and 1) is a stepwise example of the process.   

 
Figure 4. Exercise 3, p. 100, in Kontext+8 by Hansen et al. (2006). 

 

 The four different tasks in Figure 4 are of the same type, Ax + B = Cx + D, as they can be 

solved by the same techniques. The techniques can be described as addition, subtraction, 

multiplication and/or division on both sides of the equal sign. An example is shown in the left 

column as a recipe. The first step is the addition of (−3x − 10) on both sides of the equal sign. 

The next step is reduction by subtraction and, finally, division by the coefficient of the unknown, 

to get x = 3. The shared technology discourse is ‘Manipulation of variables as if they were 

numbers’ and is in line with the dominant praxeology presented earlier, where the theoretical 

level is based on knowledge of arithmetic operators.  

 In the textbook Kontext+8 (Hansen et al., 2016b), the authors describe algebra as the 

language of mathematics, and in Kontext+7, the section “Algebra and arithmetic” (see Figure 5) 

begins with the description, ‘Many of the arithmetic rules and notations that apply to numbers, 

also apply to letters. If you are not sure how to calculate with letters, you can often try with 

numbers’ (Hansen et al., 2016b). An example of what Chevallard (1989) describes as a key point 

of curriculum development, where ‘numerism’ and concreteness are paramount and exclude 

algebra as a modelling tool. The description of algebra as the language of mathematics is limited 

to praxeologies for arithmetic problems in the DEM and is considered as an initial praxeology 

for the first level of algebraization (Ruiz-Munzón et al., 2020). 
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Figure 5. Example, p.102, in Kontext+7 by Hansen et al. (2006). 

 

This forms a textbook praxeology (Table 3) in the dominant epistemological reference model of 

the knowledge to be taught and contribute to the basis for the taught knowledge. 

 

Table 3. Example of Praxeology 

T Type of 
task 

Solve first degree equation of the form Ax + B = Cx +
D,  by using arithmetic operators. 

τ Techniques Addition, subtraction, multiplication and/or division on 
both sides of the equal sign (use opposite arithmetic 
operators). 

θ Technology Manipulation of variables as if they were numbers. 
Θ Theory Rules and notation from arithmetic can be used in 

algebra. 
 

 In the second example the assignment text is ‘Use the guessing methods to solve the 

equations’ (Hansen et al., 2015), and the first four items are: 1) x + 20 = 130, 2) 2x− 35 =

135, 3) 2(x + 5) = 80 and 4) 1
2

x = 20. This means that the four items should be solved by the 

same technique, that is, τ:Trial-and-error, if we are following the guidance. The DEM considers 

all four tasks as the praxis: T:Solve first degree equation, with the corresponding technique 

τ:Trial-and-error. The REM divides the items into three different types of tasks. Item 1) is 

T: Solve x + B = C, with the corresponding technique τ: Subtract   B from C to get x = C −

B, and item 2) is T: Solve Ax + B = C, which can be solved by the technique τ: C−B
A

 . Item 3) is 
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solved by using the distributive law τ: a(b + c) = ab + ac, which entails an equation of the form 

Ax + B = C, and can be solved by the same technique as item 2). Item 4) involves calculation 

with fractions but is the task type T: Solve first degree equation of the form Ax = B, with the 

corresponding technique x = B
A

 where A, B ∈ Q. 

 As illustrated in Figure 5, the book emphasises that there is a strong link between 

arithmetic and algebra, explained as follows: ‘Many of the arithmetic rules and notation that 

apply to numbers, also apply to letters. If you are not sure how to calculate with letters, you can 

often try with numbers’ (Hansen et al., 2016). This is consistent with the DEM, where the 

substitution and trial-and-error techniques are dominant in relation to equation solving. 

On the other hand, there are also instructions to solve first-degree equation of the form 

Ax + B = Cx + D, using a specific CP, as illustrated in Figure 4. The techniques can be 

described as τ: Addition, subtraction, multiplication and/or division on both sides of the equal 

sign.  

 How this praxeology is transformed from knowledge to be taught to taught knowledge in 

DLS will be illustrated with an example. 

The Rigidity of the Algebraic Techniques Actually Taught 

The episode is from an algebra lesson in Grade 8 (13–14-year-old students) and can be placed in 

LMO1,1. In the following, E is the teacher and Sn the students. The teacher starts the lesson as 

follows: 

E: We have talked about equations that can be solved. I would like a recipe for that. 

The teacher’s intention is to institutionalize and evaluate previous work with equations of the 

form x + B = C . The teacher’s wish to establish a “recipe” can be interpreted as the explanation 

of T and the emergence of τ to solve the type of task T, but the students start to discuss the 

difference between ‘reduce’ and ‘solve’. After 20 minutes of discussion, the teacher E writes 

3(x − 4) = 6 on the whiteboard and asks the students to explain how to solve the task. As 

shown above, the task can be solved by first using the distributive law τ: a(b + c) = ab + ac and 

then the technique τ: C−B
A

, according to the REM. The moment of exploration and the emergence 

of τ begins. 

S1: I do not know how to explain it, because I do it all in my head. I’m thinking of what 

inside the parentheses gives two. 
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When the student says, ‘because I do it all in my head’, it is her technique used to solve the task, 

described in the following sentence about what is inside the parentheses. This technique is based 

on the evidence that 3 ∙ 2 = 6 (or 6:3 = 2) and that the only way to get 6 with 3 as a factor is by 

doing 3 ∙ 2, the implicit technology. The teacher puts a name to this technique: 

E: Yes. In a way you use trial and error, and you can do that. Well done. 
The teacher names the emergent technique ‘trial and error’ (which does not correspond to what 

the student does) and evaluates the student’s technique by the comment ‘Well done’. 

The teacher writes 6 on the whiteboard. 

E: It is not wrong to guess and try. 

S2: There is a secret multiplication sign behind 3 and therefore is 6 divided by 3? 

E: I do not understand. 

S2: Can I show you? 

E: Yes. 

The student S2 walks to the whiteboard and writes a fraction line under 6 and writes 3 as the 

denominator. The student perceives (x − 4) as a unit and at the same time as an expression with 

a variable. The comment about the secret multiplication sign indicates that the student S2 shows 

insight into the written algebra discourse, but it is invisible because it remains oral. 

E: Then we get x minus four equals two. 

S2: I do not know what I meant. 

The moment of exploration of T and the emergence of τ end abruptly without continuing into the 

moment to build the theory block. The reason for this break could be the increasing small talk in 

the classroom. [The teacher asks the students to concentrate.] 

 E: You can also solve it in another way. 

[The teacher writes 3(x − 4) = 6 on the whiteboard and draws curved arrows from 3 to x and 

from 3 to 4. He then writes 3x − 12 = 6 on the whiteboard on the right side of the first equation, 

without any oral explanation.] 

E: I have just multiplied in the parentheses. Now I want to move −12 to the other side. 

This is a moment of institutionalization by implementation of the preferred institutional 

technique. The teacher uses the distributive property of multiplication to rewrite the expression. 

This level of theory remains implicit for the students. The process of ‘moving’ 12 to the other 

side is an informal way of using and explaining the technique τ: Addition of an integer on both 

sides of the equal sign. 
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 S3: Then it’s plus. 

 E: Then we get 3 times x is 18. 

[The teacher writes 3x = 18 on the whiteboard.] 

E: Then we must find out what to multiply 3 with to get 18. We should only divide by 3. 

[The teacher writes x = 6 on the whiteboard.] 

S1: But how do we know not to subtract 12 from 3x? How do I know if 12 should be 

removed or subtracted from something? 

 E: You cannot subtract numbers from x’s. 

[Small talk in the classroom.] 

 

One student (perhaps several) can solve the equation orally with arithmetical technology and do 

not need the algebraic symbolic manipulation to solve the task. 

The solution is not validated directly by the teacher, but the fact that she presents another 

technique may suggest to students that the first method is perhaps not ideal. The teacher’s 

presentation involves informal ideas such as ‘moving’ objects in equations, and the student who 

questions this ‘move’ get a reply from the teacher that involves a new informal and unjustified 

claim (‘You cannot subtract numbers from x’s’). 

Learned knowledge according to the diagnostic test 

The diagnostic test was taken by 69 Grade 7 students (12–13-year-old) and 22 Grade 8 students 

(13–14-year-old) from DLS. The students had 45 minutes to complete the 67-item paper-and-

pencil test. 

 

Table 4. Summary of Types of Answers in the Test 
Level Partici-

pants 
Test 
items 

Correct Incorrect No 
answer 

Sum of 
answers 

Grade 7 69 67 1622 
35% 

1229 
27% 

1772 
38% 

4623 

Grade 8 22 67 553 
38% 

373 
25% 

548 
37% 

1474 

 

Table 5 contains an a priori analysis of T where Table 4 and Table 6 present the results related to 

T. Items 2.5 and 3.6 are of the task type T: Solve Ax = B, with the corresponding technique τ: 

Divide by A to get x = B
A

. The interesting aspect is whether or not the equation can be solved by 

substitution. 
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Table 5. A priori analysis of 𝐓𝐓, related to the items from Table x and x 

T: Solve Ax =

B 

τ: Divide by A 

to get x = B
A

. 

τ: Substitution by  xϵN. 

2x = 10 
x = __ 

2x = 10 

x =
10
2  

x = 5 
 

2x = 10 
2 ∙ 1 = 2 
2 ∙ 2 = 4 
2 ∙ 3 = 6 
2 ∙ 4 = 8 

2 ∙ 5 = 10 
2x = 16 + 2 

x = ____ 
2x = 16 + 2 

2x = 18 

x =
18
2  

x = 9 
 

 

2x = 16 + 2 
2x = 18 
2 ∙ 4 = 8 

2 ∙ 6 = 12 
2 ∙ 8 = 16 
2 ∙ 9 = 18 

7x− 7
= 13 − 3x 

x = ____ 

7x− 7
= 13− 3x 
7x + 3x
= 13 + 7 
10x = 20 

x =
20
10

 
x = 10 

 

7x− 7 = 13− 3x 
7 ∙ 1− 7 = 13− 3 ∙ 1 
7 ∙ 2− 7 = 13− 3 ∙ 2 
7 ∙ 3− 7 = 13− 3 ∙ 3 

….. 
7 ∙ 10 +−7 = 13 − 3 ∙ 10 

 

x ∙
3
4 =

15
20 

x = ___ 
x ∙

3
4 =

15
20 

 

x =
15
20

∙
4
3 

x = 1 
 

x ∙
3
4 =

15
20 

1 ∙
3
4 =

15
20 

3
4 =

3
4 

 

According to the a priori analyses in Table 5, we expect the first two items to be solved by 

substitution. Since solving the third item, by substitution, requires many CPs, it is not expected 

to be a successful method. The last item can be solved relatively easily by substitution; however, 

it requires the student to be familiar with fractions.  

 The test results show (Table 6) that the first two items were answered well. The last case 

shows that most students cannot multiply fraction (otherwise, indeed, substitution would work). 
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Table 6. Item and Associated Sum of Answers in the Test, Grade 7 
Item Item 

number 
Correct Incorrect No answer 

2x = 10 
x = __ 

 

2.5 44 
64% 

10 
15% 

15 
21% 

2x = 16 + 2 
x = ____ 

 

3.6 29 
42% 

19 
28% 

21 
30% 

7x − 7 = 13 − 3x 
x = ____ 

 

4.7 15 
22% 

20 
29% 

34 
49% 

x ∙
3
4 =

15
20 

x = ___ 
 

7.6 17 
25% 

7 
10% 

45 
65% 

 

Almost half part of the students could solve the task type T: Solve first degree equation of the 

form Ax = B when A, B ∈ N. But when A, B ∈ Q , only 25% of the Grade 7 students could 

answer the item correctly. The task type T: Solve first degree equation of the form Ax + B =

Cx + D seems to cause problems for the students, since only 22% of the students had a correct 

answer and almost half of the students did not answer the question at all. The test item 4.7 is 

halfway in the test, and the missing answers are not expected to be due to lack of time. 

The picture is different for the small group of Grade 8 students – see Table 7. 

Table 7. Item and Associated Sum of Answers in the Test, Grade 8 
Item Item number Correct Incorrect No answer 

2x = 10 
x = __ 

 

2.5 18 
82% 

0 
0% 

4 
18% 

2x = 16 + 2 
x = ____ 

 

3.6 12 
55% 

3 
14% 

7 
32% 

7x − 7 = 13− 3x 
x = ____ 

 

4.7 3 
14% 

4 
18% 

15 
68% 

x ∙
3
4 =

15
20 

x = ___ 
 

7.6 8 
36% 

1 
5% 

13 
59% 

 

Items 2.5 and 3.6 are of the form Ax = B, and were answered correctly by relatively more 

students in Grade 8 than in Grade 7.  
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The picture is less clear when it comes to items 4.7 and 7.6, where it seems that more 

students in Grade 8 master T: Solve first degree equation of the form Ax = B when A, B ∈

Q, than Grade 7 students. But the task type T: Solve the first-degree equation of the form Ax +

B = Cx + D seems to cause even more problems for the students in Grade 8 than in Grade 7. 

Students’ test answers to item 4.7 can give us insight into types of errors. Figures 6 and 7 show 

two examples of failed attempts to use algebraic methods (of the type foreseen in the REM). The 

presence of the unknown on both sides of the equation makes it hard to guess a solution, even if 

2 is among the usual candidates. According to our a priori analysis we expect the student to 

collect same type of terms and then reduce the coefficient of x.  When addition of the opposite 

numbers and the distributive law fails, some students try to use arithmetic operations, but few 

succeed. 

 

 

Figure 6. Student Answer 

 

 

 

Figure 7. Student Answer 

 

These observations are confirmed when we look at the results from similar tasks in the written 

exam after DLS. 

1.1.1 Learned knowledge according to the written examination after DLS 

In May 2018, 56,700 students completed the final exam after DLS (Table 8). In May 2019, 

56,415 students did so (Table 9). We do not have access to the student responses and thus the 

actual techniques used to solve the tasks. Therefore, the percentage correct answers can only 

serve as an overall picture of the type of tasks students are not answering correctly, and not an 

insight into current praxeologies.  
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Table 8. Correct Student Answers of Items in Written Examination 2018 
Item  
Year 2018 

Task  
Solve the  
equations 

Type of task  Correct 
answer 

7.1 6x + 4 = 28 

x = 

T: Solve Ax + B = C  88% 

7.2 x
2 + 1 = 5 

x = 

T: Solve first degree  
operation wich include 

 fraction 

66% 

7.3 4 ∙ (x− 2) = 

2x + 6, 

x = 

T: Solve first degree 
 equation with brackets 

44% 

 

 

Table 9. Correct Student Answers of Items in Written Examination 2019 
Item  
Year 
2019 

Task  
Solve the  
equations 

Type of task  Correct answer 

11.1 3x + 1 = 10 
x = 

 

T: Solve  Ax + B = C  89% 

11.2 5x− 3 = 2x + 18, 
x = 

T: Solve Ax + B = Cx + D  61% 

11.3  2(x + 4)
x = 6 
x = 

 

T: Solve first degree  
equation which includes 

fraction  

46% 

Algebra as a Modelling Tool 

In the Danish common core for Grades 6 to 9, the aim of the RMO2 ‘Formulas and algebraic 

expressions‘ is that ‘the students can describe connections between simple algebraic expressions 

and geometric representations’ (LMO2,1)(Education, 2019b). This objective is transposed into the 

theme algebraic models in geometry according to the DEM. In the written national 2019 paper-

and-pencil exam, two types of tasks appear. The first type of task is ‘Determine the perimeter of 

the polygon’, with the corresponding technique ‘Add the side lengths of the polygon’. The 

second type of task is ‘Determine the area of a polygon with all sides being either parallel or 

orthogonal’. To determine the area, the technique ‘Calculate the area by using the formula of 
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rectangle area together with the additive principle (the area of a disjoint union of polygons is the 

sum of the area of those polygons)’, is used. 

The same types of tasks appear in the textbook material under a topic called ‘Geometry algebra’ 

and can also be located in LMO2,1. The textbook points out that ‘you can use geometric figures 

to model arithmetic rules by letters’ (Hansen et al., 2016a). 

 

Figure 8. Geometry Algebra (Hansen et al., 2016a) 

 

In the example Figure 8, a model of the distributive law is drawn and letters representing the side 

lengths of the rectangle are added. Algebra as a modeling tool according to the REM stays 

invisible to the student, who only needs to read the final model for the current calculation rule.   

 

Figure 8 is an example of the dominant way of deducing an algebraic law, using the technique 

‘Calculate the area using the formula of rectangle area together with the additive principle’ as 

mentioned earlier, for a particular geometric figure. The technique tells us that the area of the 

large rectangle is a ∙ c + b ∙ c, and can also be described by (a + b) ∙ c. The use of logos to 

explain this link is absent. The students are not introduced to ‘distributivity’, neither as an 

assumption nor as an axiom in algebra. The variation and generality of the distributive law also 

remain implicit, like it is not visible for the students that the example in Figure 8 is special (for 

instance, assume that a, b > 0).  

 

Figure 9. Irregular Octagon 
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The perimeter of the octagon is _________ 

The areal of the octagon is _________ 

 

In the written national paper-and-pencil examination after Grade 9 (Education, 2019a), 70% of 

the 56,700 students (aged 14–15 years old) calculated the perimeter of the irregular octagon in 

Figure 9 correctly. The students must apply the technique ‘Add the side lengths of the polygon’ 

to get b + b + b + b + b + a + 3b + a; then another algebraic technique ‘Collect equal terms’ 

can be used to get the final result 2a + 8b. 

 Modelling the area of the octagon by dividing the octagon into rectangles can be done in 

several different ways. The model can be presented as (a ∙ 3b) − b2 or (a − b) ∙ 3b +  b2 + b2, 

which, by the technique ‘Collect equal terms’, of course both can be reduced to 3ab − b2. 

 Modelling the area of the octagon is much more difficult for the students in the 

examination after DLS. Only 26% of the students could determine the area correctly. The same 

picture appears in the diagnostic test, where only 17% of the students could model the perimeter 

of a regular triangle with the side lengths e to be 3e. In the last item of the diagnostic test, the 

students must determine the perimeter and the area of a rectangle with the side lengths s and 3s. 

Only 15% of the students could determine the perimeter of the rectangle to be 8s, and only 4% 

could model the area of the rectangle to be 3s2. This disappointing result can partly be explained 

by the fact that only half of the students answered the item within the allowed timeframe. 

To model the perimeter of a regular polygon without a figural representation seems to have 

been even more difficult for the students. Less than 3% of the students could model the perimeter 

of a square with the side length (a + b) to be 4(a + b) in the diagnostic test. 

Algebra as a modelling tool in the DEM and the REM 

The use of algebra as a modelling tool appears in different ways in the DEM and the REM. Like 

Chevallard (1989) we will group the intra- and extra-mathematical system into three common 

categories: 

• Construct the algebraic model  

• Rewrite the algebraic model  

• Apply the algebraic model  

 

In the REM, the construction of algebraic models includes defining the system we want to study, 

specifying and obtaining relevant data and assigning letters to variable. The construction of 
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algebraic models in DEM is based on already defined systems and data set, and the 

specifications and variables are often assigned.  

 In the REM, rewriting algebraic models will include a reworking of the model that aims to 

look at new relations between the variables in the system and thus produce new knowledge about 

the system under study. In DEM, the rewriting of algebraic models occurs though targeted use of 

algebraic techniques, as in the initial example.  

In the REM, applying algebra models enable us to study intra- and extra-mathematical objects 

and systems. In the DEM, the application of the models primarily consists of substitution of 

numerical values for one or more variables.    

 Geometry algebra is a common topic, according to the DEM. The previous examples from 

textbooks and national examination in DLS provide examples of the use of algebraic models in 

geometry. The modelling tasks are simple and can often be solved by inserting values in known 

or given formulae. The exercises are mostly routine tasks for the students because the tasks 

belong to types of tasks with well-known techniques. 

In the DEM, the logos blocks appear informal and do not consist of ‘formal’ mathematical 

axioms and definitions. Where geometry algebra in the REM incudes the construction of 

algebraic models as well as rewriting and applying the models, and more generally connecting 

the intra- and extra-mathematical systems.  

Discussion 

How can the notion of the didactic transposition be used to give a status of school algebra? More 

specifically, how can the empirical construction of a DEM and the empirical and theoretical 

construction of a REM be used to extract the conditions and constraints which affect the didactic 

transposition of algebra in lower secondary schools? REM is used as a foundation for analysing 

DEM. Our case example from Danish lower secondary schools shows a difference between the 

intended techniques and theory according to the assignment text (DEM), and the variation of 

techniques to solve the tasks and the level of theory according to the REM. This is a specific 

constraint that affects the didactic transposition and argues for the construction of an explicit 

REM and DEM (Bosch, 2015). 

 Although the REM and the DEM are explicit, it is important to keep in mind that the REM 

is the researcher’s explicit model. According to (Bosch, 2015), the construction of the REM 

concerning school algebra provides opportunities to go beyond the assumptions held by the 

school institution itself (DEM). The written examination praxeologies discussed above are 
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examples of the knowledge to be taught. However, the teaching episode described above and the 

result from the diagnostic tests show a frequent disconnectedness among praxeologies to be 

taught, those taught and those learnt. This disconnectedness of algebra praxeologies has been 

noted before, in a Danish context by (Jessen & Winsløw, 2017), and internationally by (Bolea et 

al., 1999).  

Conclusion 

The analyses of the conditions and constraints that influence the didactic transposition processes 

of school algebra practices highlight, from various angles, the disconnectedness of praxeologies 

to be taught, actually taught and learnt by students (Figure 1). Using the didactic transposition as 

a theoretical framework provides the opportunity to construct an epistemic reference model of 

school algebra. The REM is used to analyse the DEM and describe the distance between the 

models, to provide a status of current school algebra. The DEM of school algebra in a Danish 

context shows a rigidity of techniques (and praxeologies) and the atomisation of types of tasks 

(little or no explicit relation between praxeologies), due to an absence of coherent technological 

discourses to connect and compare the techniques, and of mathematical theory to justify the 

technologies that are actually presented. 

 The official national programme of DLS describes techniques without reference to 

concrete types of task. In the paper-and-pencil examination, the students have to apply 

techniques to concrete types of tasks, but they are not required to exhibit mathematical 

technology or theory justifying the techniques. In the textbooks, there are both technological and 

theoretical elements, which link algebra and geometry by using algebra as a modelling tool to 

determine the perimeter and area of a polygon with all sides being either parallel or orthogonal. 

These examples show, however, that the generalizing power of algebra to model intra- and extra 

mathematical systems is only punctually experienced and acquired by students. This weak 

presence of the interpretation of algebra as a modelling tool is related to the general phenomenon 

of the ‘dis-algebraization’ of school mathematics (Bolea et al., 2004b). 

 At the level of the domains, there is a somewhat blurred connection between arithmetic 

and algebra. The use of arithmetic in an algebraic way means that the first stage of algebraization 

not occurs while the leaner considers the CP only as a process and not as an object (Ruiz REF). 

This ‘numerism’ and concreteness are paramount and the difficulty in introducing the need for 

algebra (because it is already there) in the knowledge to be taught and taught knowledge, results 

in the disappearance of the raison d’être of algebra. This paramount ‘numerism’ and 
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concreteness that exclude algebra as a modelling tool was already discussed by Chevallard in 

1989. (Chevallard, 1989). In the case of DLS, there is also what (Bolea et al., 1999) define as an 

atomization of school algebra, into techniques for calculation with only vague theoretical 

discourse to connect them. 

 In line with Grugeon (Grugeon, 1997) the aim of this paper was to offer a 

multidimensional model of the didactic transposition to construct a comprehensive model of 

school algebra based on previous research on school algebra within the ATD. For 

operationalising of the model, we have used a rich empirical material of qualitative and 

quantitative data and used a diverse range of ATD tools to analyse the data. We have shown how 

the didactic transposition and the construction of an explicit reference model to analyse the 

dominant reference model can be combined and used as theoretical tool to produce a diagnosis of 

the state of school algebra within a given school system, using DLS as a case study. The 

methodology – involving many data sources, whose analysis is unified by the theoretical 

framework - is a further development of Grugeon’s multidimensional model (Grugeon, 1997) in 

order to increase its generalisability and applicability in other national cases. 

 The present diagnosis outlines crucial features of the status of algebra in Danish lower 

secondary schools. An informed status, based on a sound diagnostic tool, is the best possible 

basis for meeting the challenges. Our findings confirm that the generalising power of algebra 

should be experienced and acquired by having students work in environments with a 

praxeological need for algebra (Strømskag & Chevallard, 2022). 
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Paper II 

A COMPARATIVE STUDY OF DIDACTIC MOMENTS IN 
A FIRST CHAPTER ON ALGEBRA IN DANISH AND 
JAPANESE MIDDLE SCHOOL TEXTBOOKS  

Abstract     

Teachers often base their teaching on textbook material. Textbooks play a role as mediators 

between official guidelines and teachers’ work. Therefore, it is interesting to study the 

mathematical organization of material and its connection to curricula. This paper presents a 

comparative analysis of Japanese and Danish textbook material based on the foundation of the 

anthropological theory of didactics. Our analysis focuses on how the very first introduction to 

algebra is organized in Danish and Japanese textbooks for the middle school, and in particular, 

how the distributive law is treated as a central, specific element of algebraic theory. We more 

generally look at the roles of algebraic theory that textbooks can facilitate. One result is that the 

stepwise, modular progression in the Japanese curriculum is indeed reflected in the Japanese 

textbook material, which treats one mathematical subject area after the other, in a clear 

progression. The Danish competence-based curriculum with its spiral structure is also reflected 

in the Danish textbook material, where the content areas are revisited and expanded over the 

grades.  

 

Key words: Algebraic expressions, school algebra, textbooks, anthropological theory of 

didactics, first moment of encounter 

Introduction 

Typical curriculum resources in mathematics consist of textbooks, official guidelines and digital 

resources such as interactive worksheets. In their daily work, teachers interact with curriculum 

resources, which includes selecting and modifying, for example, textbook material (Trouche et 

al., 2020). The form and content of the textbook material have implications for teaching and the 

learned knowledge. According to the anthropological theory of didactics (ATD), this didactic 

transposition of knowledge to be taught (curriculum) to taught knowledge is of special interest 
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(Chevallard & Bosch, 2014). In the transposition process, the textbook has a role as mediator 

between official guidelines and teachers’ work, as a link between intention and implementation 

(Tesfamicael & Lundeby, 2019). Just as there are differences in the form and content of 

textbooks, there are also variations in teachers’ and students’ implementation of the curriculum. 

The way students ‘use’ the textbook depends on their mathematical knowledge and their 

knowledge of the material. For example, to find support for solving an exercise in the textbook, 

some students will look for help such as worked examples and the theoretical approach in the 

material (Pepin & Gueudet, 2020). In a systematic literature review of the potentials and 

limitations of the use of textbook materials in mathematics education, one of the findings was 

that there has been less emphasis on describing the textbook itself and the relationship between 

the textbook and the curriculum in relation to other themes such as teachers’ use of textbooks 

and students’ learning (Steen et al., 2020). The aim of this study is to describe and compare two 

different types of textbooks, Danish and Japanese, in terms of how they treat the first encounter 

with algebra and the connection between textbook and official objectives. The choice of algebra 

as a content area will be explained in more detail below.  

 To study the conditions and constraints of constructs of didactic phenomena, comparative 

studies are useful (Artigue & Winsløw, 2010), as they may highlight what depends on local 

contexts and what is more general. There is a certain variety of how and when algebra is 

introduced and operationalised in the school, according to different curriculum and teaching 

traditions (Eriksson, 2022). The purpose of this international comparison is to gain more 

knowledge about similarities and differences of curriculum, particularly the relationship between 

textbook content and national objectives. In this case, we are interested in how the transition 

from arithmetic to algebra is described in different textbook material, especially the first moment 

of encounter with algebraic expressions. An understanding of the diversity between curricula can 

assess the potential for transferring textbook material from one educational setting to another, to 

assist teachers in the teaching of school algebra. 

School algebra 

School algebra and hence the transition from arithmetic to algebra is one of the content areas 

where students and teachers in lower secondary school are particularly challenged (Kieran, 

2007). This is also the case in Denmark, where Danish students continue to have major 

problems, throughout lower and upper secondary school, with numeracy and basic algebra 

(Education, 2022). This was also visible in the Trends in International Mathematics and Science 
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Studies (TIMSS) 2019 International Results in Mathematics, which indicated a worrying decline 

in mathematical performance among Danish grade 4 students (Kjeldsen et al., 2019). In the 

TIMSS 2019, Japan was one of the top five performing countries (Mullis et al., 2019). The 

objective is to gain insight into underlying reasons for the observed differences in student 

performance. Therefore, this paper attempts to analyse and compare curriculum materials from 

this country with those of Denmark. We chose Japanese textbooks because they are based on 

systematic empirical research, have a strong theoretical foundation and are translated into 

English. In particular, we examine lower secondary school algebra textbooks, focusing on the 

introduction to algebra and the encounter with algebraic expressions, as this is a fundamental 

aspect of basic algebra.  

 This study considers algebra as a modelling tool that models intra-mathematical systems 

and also as a tool to study systems in other disciplines, such as biology and physics (Bolea et al., 

2001). Two of the most fundamental concepts in algebra are equivalence and variables. 

Equivalence and the use of the equal sign as expressing an identity is central for the transition 

from arithmetic to algebra. Students need to be familiar with algebraic symbols in order to 

engage with the concepts and to prepare them for further study in mathematics. One of the most 

powerful tools in arithmetic, and an important foundation for school mathematics, is the 

distributive property, along with the commutative and associative properties. According to 

Bruner (1960), these three properties are fundamental for working with equations. These 

properties are a central part of school algebra because they provide a foundation for exploration 

and generalizations in arithmetic and for the justification of generalizations (Schifter et al., 

2008). In this context, the distributive properties are central for the level of algebraization, 

especially modelling the relationship between calculation programmes (Ruiz-Munzón et al., 

2013). The importance of these fundamental properties has been known for many years but still 

remains highlighted as a contributor to the challenges of school algebra (Jessen & Winsløw, 

2017). 

Anthropological theory of didactic as a theoretical framework 

Anthropological theories play an important role in understanding human societies, cultures, and 

behaviour. They offer frameworks and perspectives to analyse the complexities whining and 

across different institutions and cultural contexts. In this case, we use the anthropological theory 

of didactics (ATD), which has emerged as a theory of mathematics education, because we want 

to compare mathematical textbook material from two different cultures. In ATD, all human 
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activities are considered as institutionally situated where human knowledge and practice are 

modelled by praxeologies. The notion of a praxeology was introduced as an fundamental implies 

of analyzing human activity (Chevallard, 2019). A praxeology is a general model that links the 

practical dimensions (the practice) and the theoretical dimensions (the theory) of any human 

activity (Barbé et al., 2005). A praxeology consists of types of tasks, techniques, technologies 

and theories (Bosch, 2015) and can be written as the quadruplet [T/τ/θ/Θ] (Chevallard, 2019). 

The simplest praxeology in mathematics, as in other disciplines, consists of a task of some kind 

that is solved by a corresponding technique. This means the “practical block” or praxis is formed 

by the type of task, denoted by T, and the corresponding technique, denoted by τ, used to solve T 

(Barbé et al., 2005). The ‘theoretical block’ or logos consists of technology, denoted as θ, (the 

discourse on the techniques, such as how they work and what tasks they can solve), and theory, 

denoted by Θ (the general discourse that unifies and justifies technologies, both formally and 

informally). In other words, techniques for carrying out tasks are explained and justified by a 

‘discourse on the technique’ called technology. The technology is the rationale or justification 

for the chosen technique – why does it work and where does its effectiveness come from? 

Taking this discourse to an abstract level yields mathematical theory, which validates the 

technological discourse and connects the entire praxeology (Bosch, 2015). The anthropological 

approach assume that any task, or the resolution of any problem, requires the existence of 

techniques, even though the techniques are hidden or difficult to describe (Barbé et al., 2005).  

 A mathematical praxeology can be conceptualized as a type of mathematical organisation 

(MO), where an MO consists of one type of task T and the corresponding technique τ (Bosch & 

Gascón, 2006). When a set of punctual MOs is explained by using the same technological 

discourse, they form a local mathematical organisation (LMO), characterised by its technology.  

 In ATD, we usually use the term ‘didactic moments’ to describe discernible moments in 

the study process (Chevallard, 1999, as cited in Barbé et al., 2005, p. 238f; Bosch et al., 2020): 

The moment of the first encounter with the type of task T is the moment of exploration of T, 

with the emergence of a first technique τ used to solve T; the moment of constructing the 

technological and theoretical block [Ɵ/Θ]; the moment to work on the praxeology; and the 

moment of refining the technique(s) and the institutionalisation of the entire praxeology 

produced [T, τ, Ɵ, Θ]; and lastly, the moment to evaluate the praxeology (Barbé et al., 2005). In 

this case, the notion of didactic moments is used to look into the potential of the moment of first 

encounter with T as the foundation for analyses of the textbook material.  
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 It is a crucial principle for ATD researchers, when analysing any process of teaching or 

learning, to relate explicitly and critically to the mathematical content involved, in terms of its 

rationales in different institutional contexts. In line with Bolea et al. (2001) we define algebra as 

a tool to model intra- and extra mathematical systems through an algebraization process. Ruiz-

Munzón et al. (2013), define school algebra as a process of algebraization, a practical and 

theoretical tool to carry out modelling activity related to any school mathematical praxeology.  

 To detect what kind of school algebra the first moment of encounter offers, we can use the 

three-stage model of algebraization (Ruiz-Munzón et al., 2013). In the three-stage model of 

algebraization, arithmetic can be identified as the domain of calculation programmes (CP). The 

first stage of algebraization occurs as learners consider the CP as a whole and not only as a 

process. The second stage is introducing letters as parameters and unknowns, to model the 

relationship between CPs. The third and last stage of the algebraization process appears when the 

number of arguments of the CP is not limited and the distinction between unknowns and 

parameters is eliminated (Ruiz-Munzón et al., 2013). In this way, the three-stage model of 

algebraization can be used as a tool to detect and analyse general levels in the school algebra to 

be taught (Bosch, 2015). 

Knowledge taught by immersion 

Didactic processes can be organised in many other ways than by simply developing one 

praxeology at a time, following the order of the six moments. For instance, one could organise 

first encounters with several different types of tasks without pursuing any deeper technical work, 

and only later come back to a systematic approach. The meticulous pursuit of all moments for 

one praxeology would, by contrast, reflect a more structured progression, which in some cases 

could also be prescribed by official documents regulating the teaching in more or less detail.  

 Similarly, textbooks could support the implementation of didactic moments corresponding 

to different praxeologies with more or less structured progression. We find it helpful to think of 

the different approaches using the analogy of teaching a foreign language: one can proceed 

systematically to introduce phrase structures, grammatical rules and so on, one by one, or, at the 

other extreme, one can follow an ‘immersion’ method, where the students are simply exposed to 

spontaneous language use in situations with native speakers. The same approaches could also be 

taken in textbooks – with language as well with mathematics. At the one extreme, one 

praxeology is developed at a time, through all six moments. At the other end of the scale, one 

would have a more unstructured meeting with types of tasks, techniques, etc., in different and 
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possibly distant ‘natural’ situations – such as the immersion approach to language teaching. We 

can then talk of textbooks that are more or less strongly structured, and textbooks that are less 

structured and use an ‘immersion strategy’ for the organisation of the various moments. 

Research questions 

In order to gain knowledge about the transposition from curriculum to textbooks and the 

organisation of algebra in Danish and Japanese textbooks for middle school students, it is 

necessary to begin by analyzing how the first encounter with algebra is presented. Furthermore, 

the manner in which this first encounter is developed, and the theory used is also central to a 

comparative analysis. Based on the above, the following research questions have been 

formulated: 

• How is school algebra transposed from national objectives to textbooks in Japan and 

Denmark?  

• How is the very first introduction to algebra organized in Danish and Japanese textbooks for 

the middle school – for instance, what tasks appear in the moment of first encounter?  

• How do the three levels of algebraization appear in this first introduction?  

• How does the distributive law, as a central, specific element of algebraic theory, appear?  

• And what is the potential for achieving the moment of constructing the technological and 

theoretical block? 

Context of the cases to be compared 

The Japanese Ministry of Education, Culture, Sports Science and Technology (MEXT) prepares 

the curriculum guidelines for Japanese primary and secondary school, with the outlines of 

objectives and content of mathematics at each level. Japanese curricula for primary school and 

junior high school consist of two levels of official programmes, a general course of study in 

mathematics, Chugakko Gakushu Shido Yoryo, and a teaching guide for the course of study in 

mathematics, Chugakko Gakushu Shido Yoryo Kaisetsu Sansu-Hen (MEXT, 2023). The official 

program and teaching guide includes the basic act and general goals of mathematics education, 

as well as an outline of the contents for teaching mathematics in a stepwise progression. All 

schools in Japan are required to use textbooks that have been evaluated and approved by the 

Ministry of Education. The textbooks used in public schools are selected by the local education 
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council. The Japanese textbook Junior High School Mathematics: 1 (Isoda & Tall, 2019) is one 

of these required textbooks for lower secondary school.  

 The Danish Ministry of Education publishes Common objectives (Education, 2019), which 

consists of the competence-based objectives for primary to lower secondary school. The 

common objectives is divided into three parts, primary school grades 1–3 (students aged 7–9), 

middle school grades 4–6 (students aged 10–12) and lower secondary school grades 7-9 

(students aged 13–15). The competence-based learning goals are generally described in a spiral, 

integrated structure, where the mathematical content areas are introduced and re-introduced 

during primary, middle, and lower secondary school with increasing levels of depth and 

sophistication (Stein et al., 2007). The majority of Danish mathematical textbooks refer 

explicitly to the common objectives, but there is no systematic evaluation of textbook materials. 

Danish textbooks are primarily developed by mathematics teachers, based on their own didactic 

ideas and personal experience. One of the most commonly used textbook materials is KonteXt+ 

(Alinea, 2023) KonteXt+ is a series of materials for grades 0–9 (Alinea, 2023). For grades 4 to 9, 

KonteXt+ is a set of materials consisting of a core book and a workbook, checklists for the core 

book and workbook, extra sheets for help, useful links, evaluation forms, and a description of 

how the content of each chapter contributes to the achievement of the national competence 

objectives for each level. Mathematics teachers can access all this material online. The students 

primarily use the core book and workbook. 

Methodology 

Our investigation is based on the Japanese Junior High School Mathematics: 1 and the KonteXt+ 

core books. First, we identify where the moment of first encounter with algebraic expressions 

appears in the books. This is done by analysing the structure of the material by reviewing the 

books’ table of contents and locating chapters where the introduction to algebraic expressions is 

indicated or specifically stated. Then we analyse the selected chapter by exploring what type of 

task appears in this first encounter with algebraic expression, and the expected following 

moment of T emergence of a first technique τ used to solve T. We look at the potential to 

achieve the moment of constructing the technological and theoretical block [Ɵ/Θ], and finally 

the moment of refining the technique(s) and institutionalisation of the entire praxeology 

[T/τ/θ/Θ], if possible. Second, we use the three-stage model of algebraization to analyse the 

examples identified in the first part to detect the level of algebraization. Then we look at how the 

distributive property is applied in the selected chapters. In order to answer the question of how 
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school algebra is transposed from the national objectives to the textbook, we will discuss how 

the first moment of encounter with algebraic expressions relates to the curriculum and to what 

extent the textbook supports the immersion approach. 

Analysis of the Japanese textbook 

Structure of the Japanese textbook 

The introduction to the textbook, Junior High School Mathematics: 1, provides an overview of 

how each chapter is structured, with specified descriptions of the content elements and task types 

used in the book. There is also a section for parents, a description of the overall format of the 

book consisting of the main text in the chapter, the end of the chapter, and the end of the volume 

as an overview of the LMO. After ‘How to Use This Textbook’, there is ‘How to Use Your 

Notebook’, with an explanation of how the student’s personal notebook should be used for 

recording the student’s learning. The student’s notebook is a central part of the teaching practice 

in Japanese school institutions. The students’ private work in the notebook is open for inspection 

during teaching, and the teacher might select some of the students’ work to show and share 

different ideas and solutions on the blackboard (Shimizu, 1999). The last part of the introduction 

consists of ‘Ways of Thinking Mathematically’ and includes examples of analogical, inductive 

and deductive reasoning and review from elementary school. In Japan, algebraic expressions 

with letters are taught in the sixth year of primary school (MEXT, 2023). Chapter 2 in Junior 

High School Mathematics: 1 is entitled ‘Algebraic Expression’ and is divided into three levels of 

subsections. The headings of the first level of subsections are ‘Algebraic Expression’ and 

‘Simplifying Algebraic Expression’. The structure of the chapter and the relation between the 

subsections are presented in Table 1. The titles of the sections are similar to the content used in 

the textbook. 
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Table 1. The structure of Chapter 2 in Junior High School Mathematics: 1 

Chapter Subsection Level 1 Subsection Level 2 Subsection Level 3 
Chapter 2 
Algebraic 
Expression 

Algebraic 
Expression 

Mathematical 
Expression Using 
Letters 

 

How to Write 
Algebraic 
Expression 

How to Express Products 
How to Express 
Exponentiation 
How to Express Quotients 
How to Express Quantities 
Expressing Quantities Using 
an Algebraic Expression 

Value of the 
Expression 
(substitution of 
symbols by 
numbers) 

 

Simplifying 
Algebraic 
Expressions 

Linear Expression Terms and Coefficients 
Simplifying Linear 
Expression 

Addition and Subtraction of 
Linear Expression 
Linear Expression and 
Multiplication of Numbers 
Division of Linear 
Expression by Numbers 
Various Simplifications 

Using Algebraic 
Expression with 
Letters 

 

 

The chapter begins with a mathematical problem, followed by fundamental questions for the 

problem as an introduction to the new content of the chapter. The Japanese term for such a 

‘motivating problem’ is hatsumon, which means ‘asking a key question that provokes students’ 

and refers to the teacher’s act of teaching (Shimizu, 1999, p. 109). Hatsumon is not directly 

mentioned in the textbook, but there are key questions which, supports the development of 

central elements of the contents. The textbook does not provide the hatsumon itself, but present 

problems and questions that can be used as ‘material’ for the hatsumon. In this way, the first 

mathematical problem presented forms the foundation of the problem-solving process that leads 

to the subsequent moment of first encounter with algebraic expressions, which is described in 

more detail below. The chapter closes with ‘Summary Problems’, consisting of tasks for 

reviewing and consolidating the learned knowledge and also to support ‘deep learning’, which is 

content to extend the students’ understanding of the chapter’s contents. 
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Text elements supporting didactic moments 

The opening problem of the chapter, which is in fact repeatedly returned to throughout the 

chapter, is called ‘How many straws do we need?’ The context is that a rectangular pattern is 

formed by joining straws of the same length side by side. For example, one can form two squares 

by using seven straws. Students are asked how many straws are needed to make four and 10 

squares. The technique to solve these tasks could be to draw a model of the particular cases and 

then count the number of straws, or (as intended) to create a simple mathematical expression to 

model the situation. We are told that Yui used the math expression 1+3×4 to find the number of 

straws needed to make four squares. Then we are asked to explain her idea and apply her method 

to find the number of straws needed to make five, six, and 10 squares. Then Takumi’s 

mathematical expression of 4+3×(4−1) is presented to find the number of straws needed to make 

four squares, and we have to explain his idea. Next, we must suggest a method different from 

those of Yui and Takumi and explain the idea behind it (Isoda & Tall, 2019, p. 61). This 

inductive work leads to the question: ‘Using the same method as above, can you make a 

mathematical expression that can be used to find the number of straws needed to make any given 

number of squares?’ (Isoda & Tall, 2019, p. 61). This is the moment of first encounter with 

algebraic expression in the Japanese textbook Junior High School Mathematics :1. This is the 

moment where algebra is introduced as a modelling tool to model a series of mathematical 

expressions in a general way by using an algebraic expression, which constitutes the transition 

from arithmetic to algebra. This shows how to organize the moment of the first encounter with 

the task t: Express the relationship between the number of squares and the number of straws to 

build the squares, which is of course a more general type of task, in which some number pattern 

is described using algebra. The moment of exploration of this task leads to the emergence of a 

first technique τ used to solve T. In the case of t, the mathematical expressions from the previous 

introductory work are used to model the relationship by generalising arithmetic expressions, 

leading to the mathematical expression 1+3×(number of squares). Letting a represent the number 

of squares, we get 1+3×a. The moment of constructing the technological and theoretical block 

[Ɵ/Θ] begins with the written formula and the sentence ‘Such mathematical expressions with 

letters are called algebraic expressions’ (Isoda & Tall, 2019, p.62). Then the moment of refining 

the technique(s) appears when we have to write the other mathematical expression as an 

algebraic expression and get 4+3×(a−1). The two equivalent expressions, 1+3×a and 4+3×(a−1), 

represent two different ways of ‘seeing’ and describing number patters and suggests a need to 

develop and compare the technique(s). In particular, we need ways to describe and recognize 
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equivalent algebraic expressions and the insight that ‘algebraic expressions using letters serve as 

both the method to find the number of straws, as well as representing the result we want to find’ 

(Isoda & Tall, 2019, p. 63). This will also be central at the moment of institutionalizing the entire 

praxeology. 

Level of algebraization 

The introduction to the algebraization process begins when the student is asked, ‘How many 

straws are needed to make four squares?’ The techniques to solve the task are based on repeated 

addition, with four straws to form the first square and then three straws to form the subsequently 

squares, written as 4+3+3+3. This is a CP based on arithmetic, and when one changes the 

mathematical expression for the four squares to 4+3×3, will see the CP in more condensed form.  

 This efficient form of notation is the hallmark of algebra. It can help us see connections 

which were previously impossible to see. In this case, it is a step towards generalisation and 

preparation for the first level of algebraization. The first level of algebraization appears at the 

moment of refining the techniques by introducing letters to model the relationship between the 

different CPs, which in this case are the various mathematical expressions for the number of 

straws to model the squares. The last step of the algebraization process emerge with the 

statement ‘Algebraic expressions using letters enable us to find the number of straws needed 

regardless of how many squares there are’ (Isoda & Tall, 2019, p. 63). Equivalence is also 

introduced with the two expressions (𝑎𝑎 + 1) + 2𝑎𝑎 and 4𝑎𝑎 − (𝑎𝑎 − 1) on pages 82 and 83 in 

Isoda and Tall (2019) by using the unknown a. The algebraic expressions model the main 

problem with squares of straws from the beginning of the chapter, and initiates the algebraization 

process. Ideas such as substitution and solving equations are introduced when connecting these 

expressions with concrete tasks such as ‘find the number of straws needed to make 50 squares’. 

The idea of equivalence 

In subsection 2, ‘How to Write Algebraic Expressions’ the aim is to learn how to express 

products and quotients as algebraic expressions by following the rules (Isoda & Tall, 2019, p. 

65). How to express products is highlighted in a box entitled ‘important’. The two important 

rules are that in algebraic expression one must remove the multiplication sign, and when 

multiplying numbers and letters, one must write the number in front of the letter (Isoda & Tall, 

2019, p. 65). In this case, the rules express a convention. This explicit description of the algebra 

discourse is followed by a series of examples, such as x×(−4)=−4x. In addition, there is a note 

that when multiplying two letters, one must write them in alphabetical order, for example b×a 
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must be written as ab. In this context, rewriting the letter is related to the algebraic notation form, 

which is ‘legal’ because of the commutative property of addition. This is a situation where the 

construction of the technological block appears before the moment of the first encounter with the 

task T and the exploration of T through the selected examples. In that way, the explicit use of the 

algebraic condensed notation constitutes the institutionalization of the constructed praxeology, as 

the final moment. The explicit introduction of the algebraic rules continues with the statement 

that ‘instead of writing 1a, remove the 1 and write a’ (Isoda & Tall, 2019, p. 65). The 

explanation is followed by an additional frame with the equivalent expressions 1 × 𝑎𝑎 = 𝑎𝑎, 

(−1) × 𝑎𝑎 = −𝑎𝑎. On the one hand, this can be perceived as the moment of refining the 

technique(s) as part of the institutionalisation of the praxeology. On the other hand, it is an 

exploration of T, with the emergence of the first technique τ used to solve T. These equivalent 

expressions are necessary to deduce that 𝑎𝑎 + 𝑎𝑎2 = (1 + 𝑎𝑎)𝑎𝑎 and 𝑎𝑎𝑎𝑎 + 𝑎𝑎 = 𝑎𝑎(𝑎𝑎 + 1), as an 

example. Then there is the exploration of T by solving the tasks 𝑥𝑥 × 1, 𝑎𝑎 × (−1) × 𝑎𝑎, and 

𝑦𝑦 × (−0.1) by the corresponding techniques τ. This is a textbook example focusing on the logos 

part of the praxeology. 

Distributive property 

The first encounter with distributive property is part of previous teaching in arithmetic, namely 

the rules of calculation. In Junior High School Mathematics: 1, the calculation rules appear in 

‘Review – From Elementary School to Junior High School’ – see Figure 1. 

 

Figure 1. Copy of Rules of calculation form Junior Hogh School Mathematics: 1, p. 10 (Isoda & Tall, 
2019) 
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The rules are added that when numbers and quantities are expressed: one can use letters such as a 

or x instead of the square, triangle and circle symbols. The first encounter with distributive 

property was part of earlier work with arithmetic. In the first chapter, ‘Positive and Negative 

Numbers’, in Junior High School Mathematics: 1, the section ‘Addition’ contains the subsection 

‘Commutative and Associative Properties of Addition’ (Isoda & Tall, 2019, p. 25). The aim of 

this subsection is to investigate whether the commutative property of addition and the associative 

property of addition rules for addition, learned in elementary school, also apply to positive and 

negative numbers. In section 3, ‘Multiplication and Division’ the commutative property of 

multiplication and the associative property of multiplication are explored (Isoda & Tall, 2019, p. 

40). In subsection 3, the four operations are combined through calculus, and the distributive 

property, which holds for both positive and negative numbers, is explored (Isoda & Tall, 2019, p. 

48). Figure 2 shows how the distributive property is modelled with equivalent expressions and a 

geometric figure. 

 

Figure 2. Copy of Distributive property in Junior Hogh School Mathematics: 1 (Isoda & Tall, 2019, p. 
79) 

This is the first encounter with distributive property in respect of both positive and negative 

numbers. In Chapter 2, ‘Algebraic expression’, the aim of the section ‘Simplifying Algebraic 

Expressions’ is to consider how to combine the terms of algebraic expressions (Isoda & Tall, 

2019, p. 75). After an introduction to terms and coefficients, the moment of first encounter with 

the use of distributive property is to combine terms for the purpose of simply stating the 

algebraic expression. Then an exploration takes place with the example of  4x−6x=(4−6)x=−2x, 

and the students must simplify the expressions as 5x+2x and −y−4y (Isoda & Tall, 2019, p. 76).  

 Next, the technique to rearrange the terms and combine them with letters and numbers is 

introduced. The technique is used to simplify the task as 2x−12−6x+15, among others. The 

section continues with the introduction to linear terms and expressions. In the subsection ‘Linear 
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Expression and Multiplication of Numbers’, the method of removing the parentheses using the 

distributive property is presented by reviewing Figure 2 (Isoda & Tall, 2019, p. 79). Then there 

is an exploration through examples and tasks where the student must simplify linear expressions, 

for example, −2(4x+5) and (1−6x)×3, explicitly using algebraic notation form. This explicit way 

of applying the distributive property is the moment of constructing the technological and 

theoretical block [Ɵ/Θ]. The continuous expansion of the distributive property contributes to 

refining the technique and leads to the institutionalization of the entire praxeology, as the final 

moment. 

The moment of first encounter with the distributive property takes place in elementary school. In 

Junior High School Mathematics: 1 there is an exploration of the property and the introduction of 

a corresponding technique by drawing knowledge from the distributive property learned in 

elementary school. Table 2 provides an overview of the stepwise progression of introducing 

distributive property in the Japanese textbook, Junior High School Mathematics: 1 (Isoda & Tall, 

2019). 

Table 2. Overview of the organization of the distributive property in Chapter 1 and 2 in the Japanese 
textbook.  

Type of Task 𝑇𝑇 Technique 𝜏𝜏 Technology 
𝜃𝜃 

Theory 𝛩𝛩 

Chapter 1    
Ex. p. 24 
(−1.2) + (−0.5) 
 
Ex. p. 25 
Calculate the following 
a) and b) and compare 
the results. 
a)(+5) + (−7) 
b)(−7) + (+5) 

(−1.2) + (−0.5) 
= - (1.2+0.5) 
= - 1.7 
 

(+5) + (−7) = −2 
(−7) + (+5) = −2 

 
 
 
 
 

Addition of 
positive and 
negative 
numbers 

Commutative Property of 
Addition 

𝑎𝑎 + 𝑎𝑎 = 𝑎𝑎 + 𝑎𝑎 
𝑎𝑎,𝑎𝑎 ∈ 𝑄𝑄 

 

𝑇𝑇: Calculate a) and b) 

and compare the 

results.  

a) 𝑎𝑎 + 𝑎𝑎 
b) 𝑎𝑎 + 𝑎𝑎 

 

𝜏𝜏:𝑎𝑎 + 𝑎𝑎 = 𝑎𝑎 + 𝑎𝑎 

 

Ex. p. 25 

Calculate 

(+11) + (−5) + (+9)

+ (−7) 

 

(+11) + (−5) + (+9)

+ (−7) 

= (+11) + (+9)

+ (−5) + (−7) 

= (+20) + (−12) 

Change the 
order of the 
numbers 
using the 
commutative 
property. 
Find the sum 

Commutative Property of 
Addition 

𝑎𝑎 + 𝑎𝑎 = 𝑎𝑎 + 𝑎𝑎 
𝑎𝑎,𝑎𝑎 ∈ 𝑄𝑄 

 
Associative Property of 
Addition 
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= +8 of positive 
and negative 
numbers 
using the 
associative 
property. 

(𝑎𝑎 + 𝑎𝑎) + 𝑐𝑐 = 𝑎𝑎 + (𝑎𝑎 + 𝑐𝑐) 
𝑎𝑎,𝑎𝑎, 𝑐𝑐 ∈ 𝑄𝑄 

𝑇𝑇: Calculate (+𝑎𝑎) +

(−𝑎𝑎) + (+𝑐𝑐) + (−𝑑𝑑) 

 

𝜏𝜏: (+𝑎𝑎) + (−𝑎𝑎) + (+𝑐𝑐)

+ (−𝑑𝑑) 

= (𝑎𝑎 + 𝑐𝑐) + (−𝑐𝑐 − 𝑑𝑑) 

Ex. p. 32 

Calculate 

7 + (−8) − 5 − (−4) 

 

7 + (−8)− 5− (−4) 

= 7 + (−8) − 5 + (+4) 

= 7 − 8 − 5 + 4 

= 7 + 4 − 8− 5 

= 11 − 13 

= −2 

The 
subtraction 
of positive 
and negative 
numbers is 
changing the 
sign of the 
number 
being 
subtracted 
and then 
adding it.  

The commutative and 
associative property cannot 
be used for subtraction. 
However, by changing 
subtraction into an addition-
only math expression, both 
commutative and associative 
property can be used.  

𝑇𝑇: Calculate (+𝑎𝑎) +

(−𝑎𝑎)− 𝑐𝑐 − (−𝑑𝑑) 

 

𝜏𝜏: (+𝑎𝑎) + (−𝑎𝑎)− 𝑐𝑐

− (−𝑑𝑑) 

= 𝑎𝑎 − 𝑎𝑎 − 𝑐𝑐 + 𝑑𝑑 
Ex. p. 48 

Calculate  

(−5) × {(−4) + 6} 

 

Ex. p. 48 

12 × (
1
2−

1
3) 

 

(−5) × {(−4) + 6} 

= (−5) × (−4) + (−5)

× 6 

= −10 

 

12 × (
1
2−

1
3) 

= 12 ×
1
2

+ 12 × �−
1
3
� 

= 6 − 4 

= 2 

 

 

Calculate 
with positive 
and negative 
numbers, 
using the 
distributive 
property. 

Distributive property of 
multiplication:  

𝑎𝑎(𝑎𝑎 + 𝑐𝑐) = 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑐𝑐 
𝑎𝑎,𝑎𝑎, 𝑐𝑐 ∈ 𝑄𝑄 

 

 

𝑇𝑇: Calculate 

(−𝑎𝑎) × {(−𝑎𝑎) + 𝑐𝑐} 

𝑎𝑎,𝑎𝑎, 𝑐𝑐 𝜖𝜖 𝑄𝑄 

 

 

𝜏𝜏: (−𝑎𝑎) × {(−𝑎𝑎) + 𝑐𝑐}) 

= (−𝑎𝑎) × (−𝑎𝑎) + (−𝑎𝑎)
× 𝑐𝑐 

Chapter 2    

Ex. p. 79 
Simplify 

2(𝑥𝑥 + 4) 

2(𝑥𝑥 + 4) 
= 2 × 𝑥𝑥 + 2 × 4 

= 2𝑥𝑥 + 8 

Remove the 
parentheses, 
using the 

Distributive property of 
multiplication:  

𝑎𝑎(𝑎𝑎 + 𝑐𝑐) = 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑐𝑐 
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𝑇𝑇: Simplify linear 
expression 𝑎𝑎(𝑥𝑥 + 𝑎𝑎) 
 

 

𝜏𝜏:𝑎𝑎(𝑥𝑥 + 𝑎𝑎) 

= 𝑎𝑎 × 𝑥𝑥 + 𝑎𝑎 × 𝑥𝑥 

= 𝑎𝑎𝑥𝑥 + 𝑎𝑎 

 

distributive 
property. 

𝑎𝑎,𝑎𝑎, 𝑐𝑐 ∈ 𝑄𝑄 
 

 

Ex. p. 76 
Simplify 

4𝑥𝑥 + 7 + 5𝑥𝑥 + 8 
 

4𝑥𝑥 + 7 + 5𝑥𝑥 + 8 

= 4𝑥𝑥 + 5𝑥𝑥 + 7 + 8 

= (4 + 5)𝑥𝑥 + 7 + 8 

= 9𝑥𝑥 + 15 

Rearrange 
the terms 
using the 
commutative 
property. 
Combine the 
terms with 
same letters 
and the 
terms with 
numbers 
using the 
distributive 
property. 

Commutative property of 
addition:  

𝑎𝑎 + 𝑎𝑎 = 𝑎𝑎 + 𝑎𝑎 
𝑎𝑎,𝑎𝑎 ∈ 𝑄𝑄 

 
Distributive property of 
multiplication:  

𝑎𝑎(𝑎𝑎 + 𝑐𝑐) = 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑐𝑐 
𝑎𝑎,𝑎𝑎, 𝑐𝑐 ∈ 𝑄𝑄 

 

  

𝑇𝑇: Simplify algebraic 
expression of the form 
𝑎𝑎𝑥𝑥 + 𝑎𝑎 + 𝑐𝑐𝑥𝑥 + 𝑑𝑑 
 

𝜏𝜏:𝑎𝑎𝑥𝑥 + 𝑎𝑎 + 𝑐𝑐𝑥𝑥 + 𝑑𝑑 

= 𝑎𝑎𝑥𝑥 + 𝑐𝑐𝑥𝑥 + 𝑎𝑎 + 𝑑𝑑 

= (𝑎𝑎 + 𝑐𝑐)𝑥𝑥 + 𝑎𝑎 + 𝑑𝑑 

 

Table 2 shows the step-by-step structure where techniques and theory from Chapter 1 are used in 

Chapter 2. In Chapter 2, letters are introduces to express the relationship between quantities by 

means of algebraic expressions. The explicit description in the textbook of the distributive 

property constitutes the moment of constructing the technological and theoretical block. By 

using the distributive property to simplify the algebraic expression, refining the technique is 

introduced. In this way, the praxeology of the distributive property forms a bridge between 

arithmetic and algebra, constituting the final moment of institutionalization. 

Analysis of the Danish textbook 

Locating the First Encounter with Algebraic Expression  

To identify where the moment of first encounter with algebraic expressions appears in the 

KonteXt+ book series, we look at the headings of the chapters for the LMOs. In KonteXt+5 for 

grade 5, 11–12-year-old students, one of the headings is ‘Numbers and Letters’, indicating the 

first encounter with algebra. We will take a closer look at this chapter to locate the moment of 

first encounter with algebraic expressions. The chapter ‘Numbers and Letters’ is divided into 

sections related to various types of activities, and the subsections are in general named after their 

content. Table 3 presents the subsections of the chapter ‘Numbers and Letters’ in the Danish 

textbook KonteXt+5, according to the headlines and the online teacher’s guide to the material.  

 The headings ‘Introduction’, ‘Knowledge of’, ‘Exercises’ and ‘Reflection’ indicate what is 

central to each subsection. The sections ‘Scenarios’ and ‘Activities’ require more detailed 
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description. A ‘scenario’ is a story or setting relating to the problem-based exercises. ‘Activities’ 

refer to mathematical problems, investigations and games which can be linked to the objective of 

the chapter. Below follows a more systematic review of the chapter. 

Table 3. The structure of the chapter “Numbers and Letters” in KonteXt+5. The actual titles of the 
chapter and its sections are listed (except for the “Scenario” subsections which do not have headings). 

Chapter  Subsection Level 1 Subsection Level 2 

Number and 
Letters  

Introduction  Picture and Classroom 
Conversation  
Activity  
Learning Goals 

 [Scenario]  New Square in the Pedestrian Zone 
Thomsen’s Numbers 
Fencing 

 Activities Your Own Formula for Step 
Counting 
Figure Number 
The Angular Numbers 
Find Patters in the Numerical Table 

 Knowledge of  Can you Calculate with Letters? 
Formulas and Arithmetic 
Expressions 
Formulas and Letters 

Number and Figure Patterns 
 Exercises   

 Reflection   

 

In the introduction to the chapter, there is a picture with coloured balls and four questions related 

to the picture for class discussion. The first two questions are: ‘How many different coloured 

balls are in the photo?’ and ‘How would you name them (the balls) if you should use a letter?’  

 After the questions, there is a group activity, where four students are each given a card 

with information about a specific number; by using all four pieces of information, the students 

must determine the number. In the last part of the introduction to the chapter, a list of what the 

students will learn in the chapter are presented. The first four goals on the list are to learn that 

letters can represent different numeric values, to use formulas and arithmetic expressions, to 

calculate with letters as if they were numbers and to model simple everyday situations as 

equations (Andersen et al., 2019). The introduction provides insight into the diversity of task 

types and praxeologies included in the chapter; these will be further elaborated in the following 

sections.  
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Text Elements Supporting Didactic Moments 

 After the introduction, the chapter opens with a story, the scenario, about Anna who has a 

paving company and a job laying stones in a pattern. 

 

Figure 3. Copy of Model and collection ad tasks linked to the story of the new pedestrian square 
(Andersen et al., 2019, p. 128). 

 

L represents the light-coloured stones, and M represents the dark-coloured stones. Anna’s model 

of the pattern consists of 12 x 12 stones. To extend the initially drawn model item 1.a, ask the 

students: ‘Draw on squared paper the first four rows of light and dark stones.’ Using the model 

of the stone pattern created in 1.a, the students can answer 1.b: ‘How many dark- and light-

coloured stones are there in each of the 12 rows?’ by counting. In 1.c, the students are instructed: 

‘Write the sequence of light- and dark-coloured stones in the first row, by using the letters L and 

M, e.g. LLMLL etc.’ This is the first encounter with the type of task T: Model a sequence by 

using letters. The model of the sequence is noted in the box on the left. The introduction of a first 

technique to solve T could be copying the list of letters from the box. The moment of exploration 
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of T takes place when answering 1.d: ‘Write the sequence of light- and dark-coloured stones in 

the second row, by using the letters L and M.’ In this case, the model of the sequence is not 

complete, and a technique to solve T is required.  

The question in item 2.a is: ‘Why can you write the number of light- and dark-coloured 

stones in one row as 8L+4M?’ This question is consistent with the type of task T: determine the 

number of elements (different stones) in a sequence. The technique to solve T could be first τ1, 

counting, and then τ2, use algebraic notation to write down the sum of the elements. Another 

technique to solve T could be τ3: write the sequence as addition, for example, 

L+L+M+L+L+M+L+L+M+L+L+M, or τ4: reduce the terms by applying the distributive 

property. The combination of τ1 and τ2 is expected to be the dominant technique, but central is 

that the exploration of T could lead to the introduction of different techniques to solve T. The 

moments of constructing the technological block, containing the algebraic notation form, and the 

theoretical block, by applying distributive property, follow more implicitly. To answer the initial 

question, ‘Why can you write the number of light- and dark-coloured stones in one row as 

8L+4M’, the students have the opportunity to evaluate the entire praxeology.  

In item 2.b, the basic pattern of the rows is modelled. In the box on the left, the first-row 

pattern is written as LLMLLMLLMLLM. Applying algebraic discourse and notation form, the 

sequence of letters would normally be interpreted as multiplication, with the product L8 M4 . In 

this case, the sequence is also modelled by addition to 2L+M+2L+M+2L+M, where 2L+M is the 

basic pattern. This is the first encounter with the type of task T: Model the pattern by an 

algebraic expression. We therefore consider that this is also the introduction to algebraic 

expressions. In this situation, the two types of tasks, T: Model a sequence by using letters, and T: 

Model the pattern by an algebraic expression, relate to different discourses on the technique and 

therefore different technologies. 

 The moment of exploration of T: Model the pattern by an algebraic expression, is through 

working with item 2.c: ‘If you can write the sequence of stones in the first row as 

2L+M+2L+M+2L+M, how would you write the second row?’ The answer to the question is: 

M+2L+M+2L+M+2L+M+2L. If we apply the commutative property for addition, we will get the 

same solution as for the first row and have the opportunity to construct the theoretical blocks, 

logos.  

 The last item is 2.d: ‘If you write the number of stones in the first row as 4(2L+M), how 

would you write the second row?’ To answer the question, the students must accept that L and M 

are not numeric variables, but a ‘stone unit’ representing the colour of the stones. The basic 
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pattern of the stones is written in the form of 2L+M, and the algebraic expression models the 

basic pattern repeated four times in a row. These different aspects are central for constructing the 

technological and theoretical blocks. The next page consists of  variations of the previously 

presented types of tasks.  

The Idea of Equivalence and Variables  

The next two pages in the chapter relate to a story about a grocer called Thomsen. A person 

Jacob is sent to the grocer to buy apples, which cost 5 cents each, and the grocer Thomsen writes 

an equation on a piece of paper: a∙5=40. In the first three items of exercise 1, the students must 

explain what 5, and 40 represent, but there is no explicit description of the form of notation in 

relation to current conventions. As noted previously, two of the most fundamental concepts in 

algebra are equivalence and variables. The verb ‘explain’ refers to the task to define the 

coefficient, the variable and the constant of the linear equation.  

Item 1.d asks the question: ‘How many apples does Jacob buy?’ This is type of task T: 

solve linear equation of the form ax=b. This is the moment of first encounter with linear 

equations and the introduction of the exploration of T. The first technique to solve the task is 

expected to be τ: solve by substitution, according to the dominant epistemological model 

(Tonnesen, 2022). The exploration of T continues with the item 1.e: ‘What would the equation 

have looked like, if they had been bought for 1 dollar?’ ( Andersen et al., 2019, p. 130). Here the 

student must change the constant from 40 to 100.  

Exercise 2 is about a person named Inge who wants to buy pears. One pear cost 8 cents, 

and Inge has 48 cents in her purse. Item 2.a asks: ‘How many pears can Inge buy?’ This question 

can be solved by division. In item 2.b, the students is instructed: ‘Write the question as an 

equation’ (Andersen et al., 2019, p. 130). This is the moment of introducing the praxeology, 

despite the fact that constructing the technological and theoretical blocks remains. If we search 

for the moment of constructing the technological and theoretical blocks, we must go to the 

‘Knowledge about’ section, where there is a description in Figure 4 of the notation form ‘when 

using letters’ (Andersen et al., 2019, p. 138). 
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Figure 4. Copy of overview of the notational form (Andersen et al., 2019, p. 138) 

 

Figure 4 presents several examples of correct algebraic notation. Next to the figure is written: ‘One 

of the differences between calculation with numbers and calculation with letters is that you cannot 

find the result until you know which numbers should replace the letters.’ This is followed by the 

statement: ‘Many of the rules that apply to calculation with numbers also apply to calculation with 

letters’ (Andersen et al., 2019, p. 138). 

 

Figure 5. Copy of examples of calculation rules (Andersen et al., 2019, p. 138) 

 

 On the left side, examples with letters are presented, and on the right side, there are 

examples with numbers. The five examples cover variations of multiplication as repeated 

addition, bracket rules, the convention about notation and distributive property. The first 

example in Figure 5 is the same as the first example in Figure 4 and is an example of the 

consistent repetition form used throughout the material. Figure 5 also contains the first 

description of distributive property in the textbook for grade 5, based on an example. This 

diverse range of tasks, list of conventions in Figure 4 and examples of calculation rules in Figure 

5 form the praxeological foundation for students’ further development of algebra. To see how 

this foundation is developed and get insight into the progression, we will look at the textbook 

Kontext+7 for grade 7, students aged 13–14. 

Level of algebraization 

We will analyse the chapter ‘Formula and Equations’ in the textbook Kontex+7, which is 

organized in almost the same way as ‘Numbers and Letters’, shown in Table 3, with the addition 

of supplementary exercises, ‘Calculate with Letters’ and ‘Solve an Equation’. The first scenario 

is named ‘An Evening in Paris”. It starts with a story about the mathematician François Viète 

and his search for ‘a simple way to solve difficult calculation tasks’ (Hansen et al., 2015, p. 92). 

This scenario introduces algebra as a tool to model arithmetic.  
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 The problem in this scenario is as follows: ‘Three brothers, Oliver, René and Cyrano, must 

share 1025 silver coins. Oliver must have 275 coins more than Rene. Cyrano must have 150 

coins less than Rene’ (Hansen et al., 2015, p. 92). Representing the share of René by x, the 

calculation becomes 1025=x+(275+x)+(x−150), which simplifies to 1025=3x+125. According to 

the context, Francois has the idea to calculate backwards to get: ‘Rene has 300 silver coins. 

Oliver has 575 silver coins and Cyrano has 150 silver coins. And “Viola [sic]! Francois invented 

the modern equation’ (Hansen et al., 2015, p. 92).  

 The problem requires a process of calculation. In this case, the first step of algebraization 

appears when the story about the brothers is modelled by an equation representing a relationship 

between the CPs. The model of the story provides an opportunity to consider the CP as a whole 

and not only as a process. In the modelling process, x is introduced as an unknown to model the 

relationship between the CP and then the equation is simplified to 1025=3x+125 which is the 

first level of the algebraization process (Ruiz-Munzón et al., 2013).  

 After this introduction, an example of how to solve an equation in three steps is presented, 

Figure 6, and the students must explain, in their own words, what happens in steps 1) to 3). 

 

1) 1025 = 3𝑥𝑥 + 125 
2) 900 = 3𝑥𝑥 
3) 300 = 𝑥𝑥 

Figure 6. Example of how to solve an algebraic expression in three steps (Hansen et al., 2015, p. 92) 

 

To explain and defend each step, the technology of the coefficient, the variable and the constant 

of a linear equation is a part of the praxeology. Knowledge about equivalence and the use of the 

equal sign as expressing an identity represents the level of theory. Then, three linear equations, 

87=12x+45, x+73,44=89,22, 3x+175=238, must be solved using the described technique and can 

be described as technical work.  

 Later in ‘An Evening in Paris’ it is stated that sometimes it is faster just to guess (by 

replacing the unknown by one or more numbers) to solve the equation. This is the moment of 

introducing substitution as a technique to solve linear equations. This is followed by eight 

equations to solve to consolidate the technique. 
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The distributive property 

As shown in Figure 5, there is a description of distributive property in KonteXt+5. An almost 

identical Figure 7 is found in the section ‘Knowledge about’ in KonteXt+7. The first thing on the 

‘Knowledge about’ page is the word ‘algebra’, which is defined as calculation with letters. In 

addition, we learn that ‘The calculation rules known from numbers can also be used when 

calculating with letters’ (Hansen et al., 2015, p. 102). This abstract theoretical statement is 

supported by the examples in Figure 7. 

 

Figure 7. Copy of examples of calculation rules from KonteXt+ (Hansen et al., 2015, p. 102) 

 

 These six examples in Figure 7 cover a somewhat unstructured variety of algebraic identities: 

multiplication by 3 as addition by a number with itself three times, commutative properties for 

addition and multiplication, the distributive law, bracket rules (including a form of the associative 

law for addition) and a notational convention [1a means 1·a which is a]. The right column 

illustrates that these identities hold with numbers replacing the letters, and thus provides examples 

of the theoretical statement cited above (when reading from right to left). This is the first time the 

textbook presents a general form of distributive property.  

 In KonteXt+8 (grade 8), another example of distributive property is presented. In the chapter 

called ‘Formula and Equations’, under the section ‘Knowledge about’, algebra is described as the 

language of mathematics: ‘Working with letters as symbols for unknowns and variables is central 

in algebra’ (Hansen et al., 2016, p. 94). No further explanation of what defines unknowns and 

variables is given. A more general description follows: ‘The rules for calculation in algebra are 

often similar to the rules for calculation with numbers’ (Hansen et al., 2016, p. 94). Then a table 

with examples is presented, similar to the examples in Figure 5 and Figure 7. This demonstrates 

the repeated use of similarity between ‘rules’ in arithmetic and algebra and the presentation of 

distributive property exemplified in the same, but not exhaustive, way, throughout the grades.  
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To describe the rules for calculation, which include distributive property, in a more general 

way, geometric models are used in KonteXt+8. 

 

Figure 8. Copy of geometry model of distributive property (Hansen et al., 2016, p. 94) 

 

‘Geometrical Algebra’ is part of the section ‘Knowledge about’ and includes the following 

statement: ‘You can use geometric figures to show rules for calculating with letters’ (Hansen et 

al., 2016, p. 95). It is not pointed out that this is in a way a special example, since we have to 

assume that a,b,c>0. It is implicit that the area of the boxes is the product of the side lengths, and 

we make use of the fundamental property that areas are additive. Usually this is shown by using 

distributive property, not the other way around. From an algebraic point of view, it could be 

more correct to say that the distributive law agrees with the algebraic model of a geometric 

identity (of areas, also involving lengths). This method of modelling distributive property but 

also commutative and associative property by geometric models is repeated in the KonteXt+ 

series. 

Comparison and discussion 

The analysis of the Japanese and Danish textbooks can be organized according to three themes:  

1. Identifying the moment of first encounter with algebraic expressions in the Japanese and 

Danish textbooks, and the relation between the LMO and curricula;  

2. The mathematical praxeologies found in the material, which include the respective levels 

of algebraization and explicitness; and  

3. The didactic approaches that seem to be suggested and supported by the textbooks. 
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Curriculum organization and the introduction of algebra 

In the Japanese textbook, chapters and sections are consistently named with reference to their 

content and objectives. The analysed chapter, ‘Algebraic Expressions’, shows a systematic 

structure with clear mathematical sub-objectives, as presented in Table 1. In the Danish 

textbook, the name of the chapter also relates to the mathematical content, but the sections are 

divided according to a large variety of task types and activities, as presented in Table 3.  

 The differences in the structures of Tables 1 and 3, and the differences between the 

Japanese and Danish textbooks in general, reflect the structures of the respective national 

common objectives. The large variety of task types and activities presented in different contexts 

found in the Danish textbook represents an ‘immersion strategy’, where praxeologies are 

developed over time. This is in line with the spiral and integrated Danish curriculum, where 

mathematical competences and praxeologies are developed over several years while revisiting 

the same content repeatedly. The stepwise and structured approach in the Japanese textbook 

reflects the stepwise structure of the Japanese curriculum, with a clear progression with the 

outlines of the objectives and content of each mathematical level.  

 This connection between the organization of textbooks and the respective curricula can 

also be illustrated by our analysis of the introduction to distributive property. In the Japanese 

textbook, distributive property in arithmetic forms the basis for distributive property in algebra 

and constitutes an extension of theory. This means there is a theoretical progression and 

connection from arithmetic praxeologies to algebraic praxeologies. This stepwise modular 

approach has, according to Stein and Kim (2006), the implication that subsections cannot be 

separated and reconstructed into other configurations without losing efficiency in goal 

achievement. In this case, distributive property in arithmetic must be well established praxeology 

with [T/τ/ θ/Θ] before distributive property in algebra is presented. A reordering of the modular 

form could therefore lead to loss of theoretical coherence, by not developing praxeologies in 

their logical order.  

 The spiral structure of the Danish curriculum is reflected in the KonteXt+ series, where 

distributive property appears several times, in somewhat different forms, in the various grades. 

The distributive law is the only field axiom that links addition and multiplication, and 

consequently it is crucial in many ways in school arithmetic and algebra. In the Danish textbook, 

the introduction to distributive property is difficult to locate precisely, because it emerges in a 

variety of special cases or ‘rules’, which are listed and exemplified in several different sections 

and in different grades. In this way, the distributive law for arithmetic and that for algebra are 
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intertwined, if not almost a merged praxeology. This gradual and, to some extent, repetitive 

approach is consistent with the spiral philosophy of the curriculum, according to which students 

are expected to acquire general principles such as the distributive law over time, as they appear 

in special cases and in task types of increasing difficulty. Stein and Kim (2006) argue that in 

spiral and integrated curricula, knowledge and skills (more or less, theory and techniques) are 

linked together, and because they are difficult to separate, they must be taught in similar ways 

over the years. 

Level of algebraization and explicitness 

In terms of the three-stage model of algebraization (Bosch, 2015), our analysis above 

demonstrates that only the first level of algebraization appear in the Danish and Japanese 

textbooks. A main difference is that hatsumon connects the algebraization process in high school 

mathematics, while the first level of algebraization in KonteXt are developed through different 

examples and exercises. This can also be linked to the difference between the curricula, as 

explained above.  

 In the Danish textbook, the term ‘rules’ is used to refer to both substantial properties and 

notational conventions. For instance, the fundamental commutative law ab=ba for multiplication 

is a level of theory Θ, where the convention to write a∙x rather as ax is technology θ. In the 

Danish textbook, both are presented as ‘rules’, with no distinction made between technology and 

theory. By contrast, in the Japanese textbook, there are explicit distinctions between tasks, 

techniques, technologies and theories with a clear description of algebraic assumptions, 

conventions and results. As an example, there is a clear connection between distributive property 

in arithmetic and in algebra and the explicit description of the notation form as convention in 

‘algebra discourse’. The Danish textbook material has a more implicit approach to central 

algebraic principles, such as distributive property. As illustrated above in Figures 5, 7 and 8, 

distributive property is applied in various examples, but its theoretical description and status 

remain implicit. This implicit approach can also be explained by the spiral and integrated 

structure of the curriculum, where the mathematical content is revisited and integrated over the 

years. This process is in line with Gravemeijer and Terwel (2000), who state that central 

algebraic assumptions on commutative, associative and distributive property might emerge as a 

part of mathematizing and the process of organizing the subject matter (Gravemeijer & Terwel, 

2000). The same assumption about the mathematizing process may also apply to the 

idiosyncratic use of symbols in KonteXt+, where a repeated disposition for the conventional 
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compact notation form might entail adaption by students, over time, to acquire important 

conventions.  

 The Japanese explicitness can also be seen in the headings of sections. This explicitness of 

content and learning goals is evident for the student during the learning process. The Danish 

textbook also contains learning objectives in the introduction to a chapter, but the connection 

between the type of tasks and corresponding techniques, and the level of theory, are present in a 

more implicit form.  

 It is also worth noting the structured focus on language in the Japanese textbook. There is 

an explicit description of ‘coefficient’ and ‘linear term’ before introducing ‘linear expression’; 

this is an example of the explicit stepwise development of the praxeology. The explicit use of the 

mathematical terms can be considered analogous to language learning by grammatical accuracy. 

The Danish textbook makes more use of commonsense terms, for example, ‘calculation rules’ in 

Figures 5 and 7, which are used to refer to both mathematical properties and conventions for 

algebraic notation. 

The didactic approach 

The didactic processes are organized in different ways in the Japanese and Danish textbooks. In 

the Japanese textbook, the introduction of algebraic expression is clearly located due to the 

LMO. In KonteXt+, the didactic moments include work on several types of tasks, where the 

(hatsumon) work with the initial problem has the potential to generate all six moments in the 

study process.  

 The use of the metaphor ‘Algebra – the language of mathematics’ in KonteXt+ describes 

the textbook’s different approach to the acquisition of algebra. Models for language learning can 

roughly be placed on a continuum, with content-driven models at one end and language-driven 

models at the other end (Snow, 2001). The prototypical content-based approach is the immersion 

model of foreign language education. If we use the same continuum for the Danish and Japanese 

textbooks, we could place KonteXt+ close to a pure immersion model, with ‘immersion through 

examples’, where the Japanese High School Mathematics: 1 is more like a pure ‘language-

driven’ approach. 

Conclusion 

The analysis of Japanese and Danish textbook material shows clear links to the respective 

curricula. The Japanese curriculum uses a stepwise modular progression, where the content areas 



60 

 

are built on previous mathematical foundation. The Danish curriculum is based on competences 

and has a spiral structure, where the content areas are revisited and expanded over the grades. A 

detailed praxeological analysis of the Danish curriculum is not possible, given that it provides 

only broad and vague guidance on the content that should (or rather can) be taught. The Japanese 

stepwise modular form of curriculum is also evident in the introduction to algebra in the 

Japanese textbook. The first introduction of algebraic expressions can be located quite precisely 

and consists of a task type where the students must model arithmetic relations using an algebraic 

expression. In the Danish textbook, the first encounter with algebraic expression is more difficult 

to locate. The transition from arithmetic to algebra is more fluid, and the introduction of letters in 

algebra is first linked to units and then to terms and variables in the KonteXt+ material.  

 Both textbooks include work with distributive property. The Japanese material has an 

explicit and theory based approach, whereas the Danish textbook material has a more implicit 

and example-based approach. This difference between the explicit and implicit approaches is 

also visible in the work with the algebraic notation form. The Japanese material has an explicit 

description of how to use the algebraic notation form properly, whereas the implementation of 

the algebraic notation form in the Danish textbook material is more implicit and presented at the 

same time as the work on tasks.  

 In their introduction to algebra, both textbook materials include exposure to the first level 

of algebraization. When applying the theory of didactic moments to look at the potential of the 

textbooks to support technico-technological moments, we see that the Japanese textbook material 

primarily builds one praxeology at a time, while the Danish textbook material – through its 

numerous activities – leads to work on several praxisblocks simultaneously, possible long before 

construction of the logos blocks. In this way, the Danish textbook material’s approach to the 

introduction of algebra can be compared to the approach to language learning described as 

‘teaching through immersion’, with exposure to a large variety of task types which can later be 

consolidated at the level of theory. The connection between curriculum structure and textbook 

material is clear when we look at the LMO, and it is therefore interesting to compare textbook 

material from countries with different curriculum structures. 
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Paper III 

Conditions and constraints for using a foreign 
textbook to support the transition for arithmetic to 
algebra. 

Abstract 

The transition from arithmetic to algebra is a major challenge in lower secondary school 

mathematics. Mastering algebra as a modelling tool and especially the use of algebraic 

expressions is necessary for students’ further mathematical education. Textbook material is a 

central resource for mathematics teachers to teach school algebra. In this study, we investigate 

the conditions and constraints for using a translated textbook chapter on early algebra from Japan 

in a Danish lower secondary school, based on an earlier diagnosis of the state of algebra in the 

latter institution. The intervention suggests that explicit, step-by-step instructional material from 

Japan can indeed contribute to enhance both students’ and teachers’ knowledge of basic algebra. 

Through detailed classroom observations and teacher interviews, it becomes evident that while 

the Japanese material offer clear advantage in terms of conceptual clarity and structures 

progression, it is also demanding for teachers to integrate the material into an implicit, spiralling 

curriculum.   

 

Keywords: Textbook impact, School algebra, Praxeology.  

Introduction 

The purpose of this study is to describe the conditions and constraints of using a Japanese 

textbook chapter in Danish Lower secondary school. What impact does the textbook have on 

teaching and learning school algebra?  

Japan and Singapore are among the few countries that have consistently demonstrated top-10 

levels of achievement in international mathematics assessments. This is also the situation in the 

PISA 2023 survey. The results reveal that Japan and Singapore are among the five OECD 

countries to have achieved both above-average results and positive progress between 2018 and 

2022 in mathematics performance (OECD, 2023). A commonality between Singapore and Japan 
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is the utilisation of mathematics textbook material, which is extensively based on empirical 

research, and to have a system of official quality screening of textbook material, as a condition 

for use in school (Yoshikawa, 2008; Cheng & Yeo, 2022). In these countries, as in other 

countries, textbook material remains the central resource for the teaching of mathematics 

(Gueudet et al., 2012; Cheng et al., 2021).  It is generally acknowledged that teachers rely on 

textbook material to guide their teaching (Remillard, 2010). Therefore, it is tempting to 

investigate if textbook materials from countries like Singapore and Japan can contribute to 

improve teaching in other countries. Obstacles include the need for translation, and different 

curricula and institutional contexts. What are the implications of using textbook material from 

another national curriculum and school context than the one in which they teach?  

 Previous studies have examined the use of these thoroughly tested materials in other school 

contexts. (Jackiw et al., 2016; Lindorff et al., 2019). The aim was to ascertain whether the 

textbook material could contribute to raising students’ overall level. The emphasis on the 

application of new curriculum material is also the primary strategy for improving mathematics 

education (Remillard, 2005). The efforts to implement “Singapore math” using its textbook 

material have been quite widespread in both the UK and United States, however with modest 

effect on student achievement (Jacci et al., 2016, Lindorff et al., 2019).  

 The objective of this study is to identify the conditions and constraints associated when 

applying a Japanese textbook chapter in Denmark to teach a specific mathematical content area 

(introductory algebra) which is known to be particularly problematic in Danish school. (Author, 

2024a). The hypothesis is that by focusing on a single and problematic subject area, and by 

paying attention to official goals in that area, we might find more nuanced results concerning the 

possibility of using the material, beyond the evident obstacle of adopting an entirely new 

curriculum. 

 

School algebra as an area of focus 

From arithmetic to algebra: Transition challenges in Danish school context 

The national “common core” for mathematics in Denmark consist of competence-based learning 

goals with a spiral integrated structure (Ireland & Monthan, 2020). This means that the 

mathematical content areas are introduced and repeatedly returned to throughout primary and 

lower secondary school, progressing in depth and sophistication (Author, 2024b). In the national 
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curriculum for school mathematics in Denmark the overall goal for arithmetic and algebra in 

lower secondary school (from grade 6 to, and including, grade 9) is: “The students can use 

rational numbers and variables in description and calculations” (Education, 2024). Algebra as 

subject area is divided into three main sections: Equations, Formulae and algebraic expressions, 

and Functions. An epistemological examination of school algebra in Denmark after lower 

secondary school led Cosan (in press) to posit that there are three types of tasks represented in 

the national goals, textbooks and exams: setting up an algebraic model, based on numerical 

information, substituting in an algebraic model and rewriting an algebraic model. The difficulties 

which students experience when it comes to technical skills in algebra and encountering these 

three types of tasks, are an integral component of a recent diagnosis of school algebra in 

Denmark (Author, 2024a). It reflects an international trend of dis-algebraization and atomisation 

of school algebra (Bolea et al., 2003). In his early works, Chevallard described a state of affairs 

in French school, where the rules for manipulating algebraic expressions had become 

unmotivated drills, and rewriting becomes an end to itself, rather than a means to solve problems 

(Chevallard, 1985, 1989). Our previous analysis of the current situation in Denmark suggests 

that these skills are no longer extensively taught. Moreover, the weakness of theoretical 

dimensions in the teaching of arithmetic (in particular, fractions) also presents itself a challenge 

in the transition from arithmetic to algebra, as it leads to limited potential to draw upon general 

arithmetic properties in the introduction of basic algebra (Author, 2024a). The commutative, 

associative and distributive law are theoretical aspects of arithmetic, and may also serve as 

important foundations for school algebra, for instance when working with equations (Bruner, 

1960). Modelling and applying such arithmetic properties are potentially a crucial part of school 

algebra because they provide the basis for exploration and generalisations of patterns and 

principles in arithmetic (Schifter et al., 2008).  

 

Curriculum and textbook material as a resource 

In general, the subject of mathematics, and school algebra in particular, is associated with the 

extensive use of textbook material. The field of research into the content and transition from 

primary to lower secondary school in school algebra has been growing since the 1990s (Kieran, 

2007, 2022). The first encounter with algebra and especially the transition from arithmetic to 

algebra can be inferred form the curriculum and textbook material (Author, 2024b). Research has 

demonstrated that the way students are introduced to key aspects in their textbook - like 
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properties of the equal sign - is of critical importance (Li et al., 2008). It is reasonable to posit 

that this also applies to other key aspects of school algebra: the use of symbols that are different 

in arithmetic and algebra (Kieran, 1990), how theoretical elements, as the commutative, 

associative and distributive law of algebra are introduced etc.  

 In Denmark, mathematics textbooks are produced by individuals with an interest in 

mathematics, and the material is not subject to quality control or requirements to follow national 

guidelines. Schools and municipalities can enter into purchasing agreements; in some cases, it is 

left to the individual teacher to select the material to be used in teaching. One of the most 

common textbook materials in Denmark is KonteXt. Each chapter has a theme where many types 

of task and associated techniques appear. The learning process entails the students practising 

each technique on numerous occasions in a variety of contexts. The books thus deploy a spiral 

and implicit approach to mathematical theory, where the repeated use of techniques provides an 

opportunity to experience the theoretical connections and structure (Steiner, 1987). This is in line 

with the national curriculum: after grade 3, the student should have discovered the rules of 

arithmetic and have knowledge of the relationship between the four operations (addition, 

subtraction, multiplication and addition, cf. Education, 2024). It is not explicitly described what 

relationships and rules the student should learn. By contrast, the Japanese curriculum has a more 

linear and stepwise approach (Ireland & Mouthaan, 2020).  

 This motivates our interest in Japanese textbook material and our choice of experimenting 

an excerpt of the chapter “Algebraic Expression” from Junior High School Mathematics:1 (Isoda 

&Tall, 2019). The chapter begins with a “launch problem” which is frequently returned to in the 

chapter, to motivate and build up algebraic tools for problem-solving (Author, 2024b). The 

problem is “How many straws do we need?”, where a rectangular pattern is formed by joining 

straws of the same length side by side. The problem can be solved by students in multiple ways, 

the techniques to solve the tasks are introduced and justified one by one, in a stepwise structure. 

This approach also ensures that the foundation of arithmetic is established before the 

introduction of algebraic elements, and enables the construction of theoretical discourse, where 

algebra models arithmetic. To illustrate this, the basic algebraic properties, commutative, 

associative, and distributive law are explicit described in the first encounter with algebraic 

expressions and are linked to the properties in arithmetic (Author, 2024b).  

We want to determine the extent to which explicit, and more linear step-by-step material can be 

used in a school context otherwise based on implicit and spiralling curriculum, to reinforce 
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theoretical elements of teaching and thereby connections among otherwise fragmented elements 

of mathematical practice.  

Praxeology and praxeological change as analytical framework. 

In ATD, the production, acquisition and dissemination of knowledge is interpreted as human 

activity, modelled by praxeologies (Chevallard, 1999, 2019). Praxeologies furnish a general 

modelling tool which links a “practical block”, praxis and a “theoretical block”, logos. The 

practical block consists of type of tasks and the corresponding technique to solve the task type. 

The theoretical block consists of technology and theory. Technology is the discourse on the 

techniques, such as how they work and what tasks they can solve. The theory validates the 

technological discourse and thus confirm the entire praxeology (Bosch, 2015). In this way, a 

praxeology consists of the four T’s type of task, a technique, technology and theory (Bosch, 

2015). This anthropological approach assumes that every task or solution to a problem is based 

on the use of techniques, even if these techniques are hidden or difficult to describe (Barbé et al., 

2005).  Praxeologies may also occur in larger systems in which multiple practice blocks share 

the same technology and theory (Chevallard, 1999). Mathematical praxeology is a useful model 

for describing mathematical activity, and in particular, algebra. Algebraic tasks and the 

corresponding techniques for solving them are linked to the technology used, as well as the 

specific compact notation form employed in algebra. This allows us to differentiate between 

discourses that are theoretically informed and those that are rooted in tradition. Praxeologies are 

constructed over time and constituted through activities. This implies that a praxeology does not 

possess a fixed form; rather, it is a dynamic entity that can be represented and modelled again. 

To describe this praxeological reconstruction, we can use the concept of praxeological change 

(Putra, 2019). The process of praxeological change requires students to redevelop or reconstruct 

larger complexes of mathematical practice, technologies and theories. This is not merely an 

individual endeavour; it is a process in which the praxis and knowledge blocks of all students 

must adapt over time to a new institutional standard of praxeologies. ATD postulates that human 

activity can be explained by conditions and constraints that appear or are made available in 

institutions, and that each person adapts to, adopts and develops these (Bosch & Gascón, 2014). 

Therefore, observable behaviour will consist of a mixture of personal and institutional 

components.  
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Research question. 

To investigate what praxeological changes occur when using a textbook chapter from an explicit 

step-by-step curriculum into a school context based on implicit circular curriculum to help 

students and teachers to overcome the transition from arithmetic algebra, we ask the research 

question: What praxeological change can be observed in Danish lower secondary school when 

mathematics teachers use adapted research-based resources from Japan to overcome the 

challenges in the transition from arithmetic to algebra? We are also interested in the obstacles 

and potentials for praxeological change that appear. 

Context and Methodology. 

The intervention took place in three Danish grade 8 classes from September 7 to October 7, 

2022. According to national statistics (Table 1) the intervention school can be described as an 

average school some respects. However, the students’ test scores are clearly below the national 

average, particularly in mathematics, also when socioeconomic conditions are considered 

(Education, 2023).   

 National Intervention 
School 

Average number of students at the school  295 276 
Average number of students in the classes 21 23.2 
The grade point average for the compulsory tests 
after grade 9 

7.9 6.8 

The average for the compulsory test in mathematics  7.3 6 
The average for the compulsory test in mathematics 
without aids 

7.7 6.3 

The average for the compulsory test in mathematics 
with aids 

6.8 5.7 

Students with the highest well-being amount 89.9% 90.3% 
Absence of students  8.1% 10.5% 
Students’ progression to secondary education  87.2% 87.2% 

Table 1. National school statistics and data for the intervention school (Education, 2023) 

 

The school operates with additional teachers who are present in some lessons to support specific 

groups, like high-performing or low-performing students in mathematics, or individual students 

at large. The school also employs a “mathematics teacher guide” (matematikvejleder) who 

supports and advice the teachers of mathematics in grade 6 to 9.  

 The team of grade 8 mathematics teachers meets once a week to prepare lessons together. 

The team thus teach the same mathematical themes at a given time throughout the year. The 
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teachers do not use a fixed textbook system and take turns to choose material that everyone in 

the team uses for teaching. However, individual teachers sometimes select supplementary 

material for their teaching. 

 The textbook material Junior High School Mathematics:1 (Isoda & Tall, 2019), used for 

the intervention, was chosen for several reasons. First, it is based on systematic empirical 

research. The books are translated into English and have an explicit stepwise structure. We 

selected the introductory chapter on algebra. The chapter “Algebraic Expressions” (Isoda & Tall, 

2019) was translated from English to Danish and handed over to the teachers without further 

instructions. The were informed that they were participating in an experiment to test a translated 

Japanese textbook chapter. The teachers, who volunteered to participate, were aware that the aim 

was to investigate whether and to what extent the use of the chapter could support the transition 

from arithmetic to algebra.  

 To answer the research question, we utilise multiple sources of qualitative data including 

classroom observations with fieldnotes, photos and video recording, students’ notebooks and 

teacher interviews. During the intervention field notes and pictures of the students’ work were 

taken throughout the maths lessons.  As all three classes had mathematic lessons at the same 

time, fieldnotes were conducted in shifts in the classes, but video of all the lessons was recorded, 

to have the opportunity to examine and compare the work of all three classes throughout. The 

video camera was placed at the back of the classrooms and focused on the teacher and 

blackboard, to capture the teachers whole class management. After the intervention period, all 

students’ notebooks were collected and copied, to gain insight into the students’ individual work  

 The selection of teaching episodes for further analysis is based on those areas where the 

Japanese textbook it particularly differs from the typically used Danish textbook material:  

 

1. The use of a challenging opening problem which is referred to throughout the chapter.  

2. The explicit discussion of the use and meaning of notation, which us particularly 

important in a first encounter with algebra and algebraic expressions. For example, it is 

emphasised that 2𝑛𝑛 a shorthand for 2 × 𝑛𝑛.  

3. The explicit and concise technological description and theoretical justification for the 

techniques that are introduced and exemplified (Author, 2024b).  

 

The selection of episodes for further analysis aims to focus on these three key elements and are 

also a main focus in the teacher interviews following the observation. The interview is based on 
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the photo elicitation interview method, where a printed transcript and photo of the episodes 

related to the three points outlined above are used to generate verbal discussion, thereby creating 

knowledge and data (Nissen et al., 2016). According to Glaw et al. (2017) “Different layers of 

meaning can be discovered as this method evokes deep emotions, memories, and ideas”. 

Episode 1: The opening problem.  

In the first lesson, the initial problem is introduced by the class mathematics teacher, Mary; the 

advanced mathematics teacher, Catrin, participates as co-teacher.  

Outline of the episode 

First, Mary asks the class what characterises a square. Students readily answer, “four equal 

lengths” and “all angles are 90 degrees”. Then they are provided with a small bag of coloured 

sticks and are instructed to construct a square using the sticks. Mary asks the class how many 

sticks they need to make a square. One student answer four. Mary draws a square and writes the 

student’s answer on the board. The students record this in their notebooks. Then, students should 

expand the figure by one, two and three squares adjacent squares, and record in their notebook 

the number of sticks employed. Mary draws the students’ answers, models and numbers, in a 

table on the whiteboard (Fig. 1).  

 

Figure 1. Photo of the whiteboard where the heading of the columns is “square” and “sticks”. 
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Mary now requests that the students determine the number of sticks required to construct a row 

of ten squares. The students work independently, and some have quiet conversations with their 

peers. Mary and Catrin observe the students’ work. Students’ utterances include statements such 

as “we just need to multiply”, “ten times three”, “there is one with four”.  

 Twenty minutes into the lesson, Mary asks the class if they have constructed a 10-chain 

and the number of sticks used. A student replies “31, three times nine plus four”.  Mary records 

the student’s response in both numerical and textual formats. 

Mary then inquires whether they could determine the number of sticks needed for 15 squares and 

100 squares. One student says, “It is still four for the first and three thereafter” and refer to the 

green text on the whiteboard (Fig. 2).  

 

Figure 2. Photo of the whiteboard with Yui’s expression and examples. 

 

 Mary now tells the class out that one student, Yui, has described the four connected 

squares with the following expression: 1 + 3 × 4. Yui is a fictional character who appears in 

vignettes throughout the textbook, for instance (as in this case) to suggest answers to a problem. 

Mary writes the expression on the whiteboard (Fig. 2), changing the multiplication sign from a 

cross to a dot, to align with the notation used in Danish school. Mary tells the students “I want 

you to spend three minutes thinking about what the numbers stand for. Write down your 
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thoughts so you don’t forget them.” The students work individually on the assignment while 

Mary and Catrin circulate in the room, observing and quietly inquiring about each students’ 

progress.  

30-minutes into the lesson Mary asks different students to share their answers with the class. 

Four students reply consecutively: 

S1: "First there is one stick” 

S2: “You take three each time, but the first one needs to be added to make four” 

S3: “The first one is the one you build on and you do it four times” 

S4: “You add three each time” 

Students then work on task 2, which is “Using Yui’s method, what math expression do we use to 

find the number of straws needed to make 5 squares? 6 squares? What about 10 squares?” (Isoda 

& Tall, 2019 p. 61)  Mary shares the students’ answers to the task by writing the techniques to 

solve the task on the whiteboard (Fig. 2)  

Mary inquires as to whether the method invented by Yui can be employed when the number of 

squares in the chain is 25 or 1000. The prevailing opinion is that this is indeed the case, provided 

that the value 4 in the first expression is replaced with 25 and 1000. One student adds “Just 

replace the last number with the number of squares in the chain”. Mary continues asking whether 

it can be any number, and the class responds unanimously “Yes”.  Then one student says “x” and 

Mary follows up by asking “What is x?”. The student answers “The number of squares”. Mary 

writes “x = number of squares” on the whiteboard (Fig. 2) 

Mary now introduces yet another method (in the textbook, suggested by the fictive pupil 

Takumi) where four squares are expressed by 4 +  3 ⋅ (4− 1). The pupils work on explaining 

this expression, just as for Yui’s. Mary shares the students’ work by writing the expressions and 

the technique to solve the tasks on the whiteboard (Fig. 3)  
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Figure 3. Photo of the whiteboard with Takumi expression and examples.  

 

Then the students are given the next task from the book: “Using a method different from that of 

Yui and Takumi, make a math expression to find the number of straws needed. Explain your 

idea” (Isoda & Tall, 2019 p.61).  

Once again, after a period of desktop work, Mary asks the students to share their results. Several 

of the students have coined the expression 4 +  𝑥𝑥 ⋅ (4 − 1) where 𝑥𝑥 is the number of squares 

minus one (the first square in the cain). Mary writes the expression on the whiteboard along with 

examples, and compares it to Takumi’s expression and examples (Fig. 3).  

 An hour has passed since the lesson began, and while the students are copying the 

expressions from the bord (Fig. 3) Mary and Catrin engage in a meta-discussion regarding the 

potential for further comparison of the expressions. They agree that it is an opportune moment to 

do something else, namely, to hand out the printed textbook material. The students are asked to 

answer Q1, Q2 and Q3 on page 63 (Isoda & Tall, 2019). In Q1 the students are required to 

determine the number of sticks needed to construct chains with 20 and 30 squares, while using 

Yui’s methods. In Q3 the students must find the number of sticks needed to construct chains with 

20 and 30 squares by using Takumi’s methods.  During their work, you can hear students 

exclaiming “It is the same” or “We get the same numbers”. In plenary, the two algebraic 



75 

 

expressions were compared, rewritten and reduced to conclude that Yui’s expression 1 +  3 ⋅ 𝑥𝑥 

and Takumi’s expression 4 +  3 ⋅ (𝑥𝑥 − 1) are in fact “equal”.  

Analysis: The importance of the opening problem for praxeological change. 

The devolution, that is the phase of teaching where the teacher hands over the responsibility for 

the investigation process to the students (Brousseau & Warfield, 2020), proceeds without any 

need for repetition or clarification. The seamless devolution indicates that the type of task 

“determine the number of elements in a given pattern”, as well as first techniques to solve the 

task, is known by students, who can draw on established techniques. The task does not require a 

praxeological change. The opening problem functions in the textbook as a motivation to 

introduce a variable 𝑥𝑥, which represents the number of squares in the chain. In the episode, a 

student spontaneously proposes the use of 𝑥𝑥  as a variable, anticipating the textbook’s 

introduction of algebraic expressions (Isoda & Tall, 2019 p.62). The use of an algebraic 

expression to encapsulate the calculation of sticks for different number of squares is explicit in 

the textbook material. The goal is to lead students to change from repeated arithmetic 

expressions for the number of squares in the chain, to the algebraic expression. Due to the 

Danish spiralling curriculum structure is not entirely new to the students observed, but also not 

fully familiar. In the last part of the episode where the students must use Yui’s and Takumi’s 

methods to find the number of sticks needed to construct chains with 20 and 30 squares, they 

realise that the methods produce the same result. The students hypothesise that Yui’s and 

Takumi’s methods are similar. Mary anticipates the task of comparing Yui’s and Takumi’s 

algebraic expression, which should appear later, according to the structure of the textbook. By 

rewriting Takumi’s expression 4 +  3 ⋅ (𝑥𝑥 − 1), Mary gets Yui’s expression 1 +  3 ⋅ 𝑥𝑥. (see 

Episode 2). This validates and clarifies the students’ hypothesis.   

 As we have seen, the pupils rather easily take this first step towards a praxeological 

change, from arithmetic to algebraic modelling of the pattern. The point that is explicitly 

described with the opening problem is that “algebraic expressions using letters serve as both the 

method to find the number of straws(sticks), as well as to represent the results we want to find” 

(Isoda & Tall, 2019 p.63), is not emphasised by the teacher in this episode.  
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Episode 2/1: Notation and explicitness 

Outline of the episode 

Mary guides the process of reducing the two algebraic expressions, to test the students’ 

hypothesis that Yui’s and Takumi’s expression are equal. In Yui’s expression, Mary rewrites the 

expression 1 + 3 ∙ 𝑎𝑎 to  1 + 3𝑎𝑎 and explains that there is an invisible multiplication sign between 

3 and 𝑎𝑎. To rewrite Takumi’s expression 4 + 3 ∙ (𝑎𝑎 − 1), Mary refers to the “bracket rule” and 

writes 4 + 3𝑎𝑎 − 3 on the whiteboard, then reorders and reduces to 1 + 3𝑎𝑎.   

 

Analysis: Notation and theory about “bracket rules” 

The textbook applies the multiplication sign ×. In this episode Mary is using the dot sign ∙ for 

multiplication (Fig. 2, Fig. 3), as in Danish textbooks. The multiplication sign × is not unknown 

to the students as it appears on their calculators. Mary does not clearly distinguish technology 

(description of what is done, “removing parenthesis”, “multiplying through” etc.) and theoretical 

elements (justifying discourse ). The distributive law, which is the foundation of “bracket rules”, 

is at the level of theory. In the episode described, both appear at the same level. Only later, with 

the explicit definition of algebraic notation (like 2𝑥𝑥 meaning 2 ⋅ 𝑥𝑥) and how to remove brackets 

by using the distributive law, the level of theory may become evident to some extent (see 

instance Episode 2/2). 

 The central point in the last section of the chapter with the heading “Using Algebraic 

Expression with Letters” (Isoda & Tall, 2019 p. 82-83), is that the two algebraic expressions for 

Takumi and Yui methods are equivalent. The students are to meet a new type of task, 

“Determine whether two algebraic expressions are equivalent”, learn how to solve it by 

techniques (like “bracket rules”) but also to relate these techniques to general and explicit theory 

previously presented in the chapter. In episode 2/1, Mary anticipates this task and therefore 

cannot draw on the theoretical elements presented throughout the chapter.  

 Upon further examination of the chapter’s subsequent development, it becomes evident 

that the introduction of a variable to answer the introductory question is related to another point, 

which is never made explicit in Danish textbooks. In section 2, the aim is to “learn how to 

express products and quotients in algebraic expressions, following the rules” (Isoda & Tall, 2019 

p. 65). The main points emphasised are:  

1) In algebraic expressions, remove the multiplication sign ×.  

2) When multiplying numbers and letters, write the number in front of the letter. (Isoda & Tall, 

2019 p. 65).  
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Stating such rules may appear unnecessary to seasoned users of algebraic notation and discourse, 

but the textbook rightly does not assume this about students. They are to be introduced to 

algebraic discourse with a condensed notation system, governed by explicit conventions rather 

than more or less opaque ad hoc rules. However, we observe that the teachers consequently 

include the multiplication sign in the introductory phase (see Fig. 2 and Fig. 3) and therefore 

postpones this point. 

The subsequent process of students’ writing an algebraic expression for Takumi and Yui’s 

method is structured by the textbook’s step-by-step structure of questions with answers. This 

structure, where the textbook offers answers to the mathematical problem, is challenging for the 

teacher Mary. In a follow up interview, she says: “If I provide a document to the students, they 

will read it and then someone will begin copying what it says here (pointing to the printed 

material)”. “They will not engage independently in the problem, but rather, they simply copy the 

material without considering their own potential solutions”. Here, Mary seems to forget how she 

actually used the fictive characters’ answers, to let the students validate and relate alternative 

methods, - concretely to set up several algebraic expressions which could subsequently be 

proved to be equivalent. 

Episode 2/2: Notation and explicitness 

Outline of the episode 

The episode begins with the introduction to section two in the chapter about simplifying 

algebraic expressions. Based on the work with linear expressions the aim is to “consider how to 

combine terms of algebraic expressions” (Isoda & Tall, 2019 p. 75). Two rectangles are drawn in 

the book, one with side lengths 1 and 7, the other with side lengths 𝑎𝑎 and 3. The teacher, Sarah, 

asks the class how they will write the area of the rectangles in algebraic expressions and adds 

“How to write the area?”. On student replies that he will multiply length and width by each 

other. The teachers ask how it should be written up and the student answers 3𝑎𝑎. The teacher 

writes 3𝑎𝑎 on the whiteboard and ask the student if it is an algebraic expression. The student 

mumbles yes… because… and the teacher completes the sentence by saying that an algebraic 

expression is when we write it as a formula and removes the multiplication sign. Then the 

students find the area of the other rectangle, which is 7.   

The teacher explains to the students that the book expresses the difference between the two areas 

by the expression 3𝑎𝑎 − 7. She asks students to explain why. They discuss the meaning of 

difference and conclude that it means subtraction.  
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 The teacher then tells the students that the difference between the two rectangles can also 

be expressed by 3𝑎𝑎 + (−7), even though (according to her) it looks “illogical”. Sarah makes the 

point that, regardless of whether the expression is written in the first or second way, there are 

two terms in the expression. One term is 3𝑎𝑎 and the other term is −7. And the number in front of 

the letter (pointing to 3𝑎𝑎) is called the coefficient. Some students tell the teacher that they do not 

understand “the system”. Sarah draws circles around the terms in the algebraic expressions on 

the whiteboard while repeating what she said about terms and coefficients. A boy reiterates that 

he does not understand Sarah’s “system” and refers to the coloured circles on the whiteboard.  

Sarah continues the lesson by saying that in the textbook, a girl claims that if we use what we 

have learned about positive and negative numbers, the terms are easier to see, as we change the 

algebraic expression into a sum (Isoda & Tall, 2019 p. 75). Sarah writes −2𝑥𝑥 − 5 = −2𝑥𝑥 +

(−5) and tells the students that the terms in this expression are −2𝑥𝑥 and −5.  

 

Analysis: Notation and the use of signs 

In episode 2.2, the task is roughly of the type T: Describe the difference between the areas of two 

rectangles, whose side lengths are given as algebraic expressions, as an algebraic expression. 

The techniques used to solve the task are 𝜏𝜏3: Determine the area of the rectangle by multiplying 

the side lengths and 𝜏𝜏4: Determine the difference between two areas by subtraction. The 

techniques applied are familiar to students. The current task is about areas, and they are 

inherently positive.  

The students can apply 𝜏𝜏3 and 𝜏𝜏4 to find the difference between the two rectangles. But it 

seems unclear to the students that the algebraic expression can be changed from 3𝑎𝑎 − 7 to 3𝑎𝑎 +

(−7) and why it needs to be rewritten. In the first expression, the minus sign between the two 

numbers represents the subtraction operation. In the second expression, the minus sign in front of 

7 represents the operation where you do the additive inverse. This point remains implicit to the 

students. The textbook refers to previously learnt about negative numbers, justifying the 

rewriting of algebraic expressions to addition-only (Isoda & Tall, 2019 s. 75). Since the teacher 

and the students have not used the textbook material before, it is not possible to refer back to 

earlier chapters. On the other hand, negative numbers are not new to the students: according to 

the Danish curriculum they should know and be able to use negative integers after grade 6 

(Education, 2019). In this episode, the connection to previously acquired knowledge about 

negative numbers is not established and the transition from arithmetic to algebra become 
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fragmented. Moreover, the theoretical point regarding the exact meaning of “terms” and 

“coefficient” is not really motivated and remains opaque to the students. 

The distinction between laws (like the commutative) and conventions (like writing 3𝑎𝑎 and not 

𝑎𝑎3) is a key element of the textbook material but is not emphasised or even made explicit in this 

episode.  

Episode 3: Negative exponents and level of technology.  

In the Japanese textbook material, theoretical elements are integrated with problem solving and 

technical work, and not referred to isolated theoretical sections. In this episode the teacher May 

asks two students to take a closer look at the “close up” section, which are about the use of 0 and 

negative numbers as exponents. The textbook asks the question “Can we use 𝑎𝑎1 𝑜𝑜𝑟𝑟 𝑎𝑎0 ? In 

general, the book’s “Close up” sections relates to further perspectives, which can be beyond the 

mandatory curriculum at stake (Isoda & Tall, 2019). 

 

Figure 4. Copy of the negative power assignment in the textbook material (Isoda & Tall, 2019, p. 71) 

 

Outline of the episode 

The students in the class are working on questions about how to express quantities using 

algebraic expressions. The teacher notices that two boys have finished the questions and asks 



80 

 

them to work with ‘close up’ which is text and tasks related to further content and problems 

(Isoda & Tall, 2019 p. 3). The teacher May asks the students to find  𝑎𝑎−1 and 𝑎𝑎−2.  

The two students engage in a discourse on the pattern of how, when adding 1 to the exponent, an 

additional 𝑎𝑎 is “appended”. The two students reason their way to 𝑎𝑎−1 = −1 .  

 

 

Figure5. Image of student answering the assignment “Close up” Figure 4. 

 

The boys continue to infer 𝑎𝑎−2 = −𝑎𝑎, 𝑎𝑎−3 = −2𝑎𝑎, 𝑎𝑎−4 = −3𝑎𝑎, …  (Fig. 5). It is assumed by the 

students that they have solved the task, and they initiate contact with May. May, after seeing the 

answers, asks the students about their reasoning and looks at their notes. Then the teacher asks: 

“Have you tried plugging it into a calculator?” and follows up by suggesting the students to 

replace 𝑎𝑎 by 2 and type 𝑎𝑎4,  𝑎𝑎3, 𝑎𝑎2, …. The students input 2−1into their calculator and are 

surprised to discover that the results is one half. They continue to enter 2−2, 2−3 and 2−4, and 

observe the pattern emerging  𝑖𝑖𝑖𝑖 𝑎𝑎 = 2, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑎𝑎−1 = 1
2

,𝑎𝑎−2 = 1
4

,𝑎𝑎−3 = 1
8

 ,𝑎𝑎−4 = 1
16

,… The 

students contact May and present the following pattern “the number below the fraction line 

doubles in size”. May applauds this answer.  

 

Analysis: The link between technology and theory 

First, 𝑎𝑎 is the base and 𝑛𝑛 = {−1,−2,−3,−4, . . } are the exponents. From the photo figure 5, and 

the video recording of the students’ response, it is not total clear what their reasoning was. But 

the students seems to reason that if the exponent decreases by one, it means subtraction of 

𝑎𝑎. This method does not fit the step from 𝑎𝑎−1 𝑡𝑡𝑜𝑜 𝑎𝑎−2, and does not lead to discovering the 
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meaning of negative exponents in general. Instead of pointing out that the subtraction is 

theoretically inconsistent with the pattern given in the book, May asks the students to enter the 

expression on the calculator with base 𝑎𝑎 = 2, thus to re-explore the task based on automated 

arithmetic. Students then infer from this that 2−𝑛𝑛 = 1
2𝑛𝑛

. It remains an individual case and does 

not develop into a general model; moreover, the inference is essentially based on the authority of 

the calculator, rather than on reasoning from the pattern exposed in the book.  

 This book’s setup has potential to initiate a praxeological change, from seeing 

exponentiation as “repeated multiplication” towards more general definitions, justified by 

allowing general rules to hold – here, essentially, the exponential rule 𝑎𝑎𝑛𝑛+𝑚𝑚 = 𝑎𝑎𝑛𝑛𝑎𝑎𝑚𝑚 . As such 

formality is beyond the level of the book, the choice of observing a pattern was made, to help 

students explain why 𝑎𝑎−𝑛𝑛 = 1
𝑎𝑎𝑛𝑛

 is a reasonable definition (for natural numbers 𝑛𝑛). The teacher’s 

intervention replaces the pattern with the calculator, as foundation for the reasoning – and, as the 

calculator does not have symbolic computation, the intervention also reduces the problem from 

one that requires algebraic reasoning (modelling an algebraic pattern, in terms of algebra) and 

back to arithmetic reasoning (modelling an arithmetic pattern with algebra). Instead of exploring 

the students’ faulty algebraic reasoning and helping them modify it, she thus reduces the problem 

to fit more familiar praxeologies, similar to the introduction problem. But she also deprives the 

problem of much of its intended potential for praxeological change. 

Episode 4: The invisible level of theory 

Episode 4 takes place in a classroom of students who are considered high performing and highly 

motivated. The other students are working with the same part of the textbook chapter “Linear 

expression and multiplication of numbers” (Isoda &Tall, 2019 p. 78-79), in their respective 

classes. The aim of the section is to consider how to simplify linear expressions.  

 

Outline of the episode 

The students have worked with the task type T: Simplify linear expressions of the form 𝑎𝑎𝑥𝑥 × 𝑎𝑎, 

and subsequently worked individually with example 4 (Figure 6). After twenty-five minutes 

individually work, the teacher asks how the students have reduced the expression 2(𝑥𝑥 + 4). In 

the textbook, the example is followed by the distributive law, illustrated by a geometric figure 

(fig. 5).  
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Figure 6. Copy of textbook example with method, solution and reference to theoretical foundation 
(Isoda & Tall, 2009 p. 79) 

 

The teacher Tina asks the students what to do first. A student answers that he has “multiplied out 

the brackets”. The teacher follows up by saying “What is two multiplied by 𝑥𝑥 and two multiplied 

by four?”, while writing 2(𝑥𝑥 + 4) on the whiteboard. A student replies, "two 𝑥𝑥 and eight”. The 

teacher comments on the student’s calculation process in plenum: “you have skipped a step and I 

think some of you also do that when you both reduce and make equations… then you skip some 

steps… where you actually realise… that you have multiplied in (the bracket)… then I do not 

have to write two multiplied by x and two multiplied by four”. The teacher then posits that “the 

advantage of applying an additional calculation in which the 𝑥𝑥 is multiplied by two, and four is 

multiplied by two, is that if the result is incorrect, it is possible to identify the specific point in 

the series of calculations at which the error originates”.  

 

Analysis: The distributive law and “Bracket rules” 

In this episode, the type of task is T: reduce a first-degree equation, by applying the techniques 

𝜏𝜏1: apply 𝑎𝑎(𝑎𝑎 + 𝑐𝑐) = 𝑎𝑎 ∙ 𝑎𝑎 + 𝑎𝑎 ∙ 𝑐𝑐, and 𝜏𝜏2: Simplify by collecting and reducing similar terms. 

The teacher employs a clear and systematic discourse on techniques, and the practice of 

documenting each step is based on the premise that it allows for later verification of the 

techniques used. I the follow-up interview, Tina emphasises that it is important to her that the 

students understand each step in the process of solving the task and are “aware of what they are 

doing”. Here, understanding means knowing what techniques to use, applying them correctly, 

and being able to verify that. The fact that 𝜏𝜏1 is a direct application of one general theoretical 

law, while 𝜏𝜏2 draws on both the commutative law and execution of arithmetic operations, as well 
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as some kind of definition of “similar terms” (here, constant terms and first-degree terms), 

remains opaque. Although there is an explicit reference to the distributive law in the book’s 

assignment (Fig. 6), the level of theory remains implicit in the teaching, or is not considered any 

difference from the techniques which are amply explained. Thus, the explicitness is limited to 

technology, while the theoretical foundations remain implicit.  

Discussion 

The importance of the opening problem for praxeological change 

Episode 1 shows the impact of an initial mathematical problem with an investigation process that 

give rise to the introduction of a variable. The episode shows the change from repeated 

arithmetic expression to the introduction of a general algebraic expression, which is the first step 

toward a praxeological change from arithmetic to algebra. According to Putra (2019), the process 

of praxeological change requires students to develop or reconstruct larger complexes of 

mathematical practices, technologies and theories. In this case the opening problem gives rise to 

work with central techniques to simplify linear equations, technological elements as how to use 

algebraic expressions with letters and key theoretical elements such as the distributive property.   

The systematic and stepwise development of the problem throughout then chapter is both the 

potential and the challenge of the opening problem. When examples and points are presented in 

the intended order, a clear connection is made between praxis and logos. But when anticipating 

points like in episode 1 where the teacher reduces and compare algebraic expressions without the 

technological and theoretical foundation it reflects the international trend of dis-algebraization 

and atomisation of school algebra (Bolea et al., 2003).  

Notation and explicitness in the Japanese textbook.  

The explicit description of the use of algebraic notation form is a core feature of the material. I 

episode 2/1 and 2/2 this potential is not being realized. This may be because the meaning of the 

explicit notation form is not clear to the teacher and the reasons for when a change in notation is 

due to theory or conventions that teachers are not used to teach explicitly, and perhaps only 

partly aware of. But there are some signs that this potential can be realized gradually. When 

Catrin in the subsequent interview asserts that they (the teacher team) have become aware of the 

significance of the notation and have explored topics that they might have overlooked 

previously, it is a sign that praxeological change is emerging at least for the teachers.  
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The importance of distinction between laws and conventions. 

The distinction between laws and conventions is central to the material used, and is also present 

in episode 2, 3 and 4. In episode 3 the teacher is aware of the step-by-step process in the 

reduction of a first-degree equation but although the textbook offers a description of the 

distributive law as a theoretical foundation, it is not applied by the teacher. 

Episode 2 also exemplified that the textbook material contains tasks with potential to produce 

praxeological change, here to provide a symbolic rationale for the definition of negative powers. 

That potential is, however, not realised in the lesson, in part due to the teachers’ suggestion to 

return to number patterns generated by calculator use, when the students fail to solve the task. 

There is no doubt teachers’ lack of experience and habit of teaching algebraic theory (at the 

given level) is a considerable obstacle. 

 We can relate this to the distinction between technology and theory, which is central in 

school algebra as demonstrated by Chevallard (1989), Bolia et al. (2003) and Bosch (2015). 

While 𝑥𝑥−𝑛𝑛 = 1
𝑥𝑥𝑛𝑛

  is indeed a definition here, the book aims to make students realise a theoretical 

rationale – rather than simply to describe an exemplify and arbitrary “rule” or technique. 

However, it requires the teacher to realize this potential of the material so that the difference 

between technology and theory does not remain implicit, as is most often the case in Danish 

school algebra (Author, 2024b).  

Conclusion 

The aim of this study was to investigate conditions and constraints for realising praxeological 

change through the use of a textbook chapter from an explicit step-by-step curriculum, in a 

school context based on an implicit circular curriculum. The intention is to help students and 

teachers to cope with the transition from arithmetic to algebra. To investigate this, we asked the 

research question: What praxeological change can be observed in Danish lower secondary 

schools when mathematics teachers use adapted research-based resources from Japan to 

overcome the challenges of the transition from arithmetic to algebra? 

 The four episodes exemplified both potential and obstacles to adapting the textbook 

material from Japan in a Danish school context, in view of promoting praxeological change 

related to the transition from arithmetic to algebra. The teachers succeed to a large extent in 

managing the use of challenging opening problems that are pursued throughout the chapter, in 

view of showing how algebra provides real and clear solutions (rather than just new kinds of 
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procedures to manage). The textbook also supports them in making notational conventions 

explicit as technology, and thereby less ad hoc to students. However, when it comes to 

distinguish algebraic conventions, laws and definitions, and teach them in the theoretically 

coherent way supported by the textbook, progress is at best slower and meets the obstacle of the 

teachers’ limited didactic and probably also mathematical experience in this area. However, the 

interviews suggest that these obstacles could decrease with time, so that students would also 

benefit from the explicitness of theory provided by the text in question – to realise a 

praxeological change from algebra dominated by ad hoc technology to algebra based on few 

laws and rich theoretical connections. 
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Paper IV 

Diagnostic test tool based on a praxeological 
reference model to examine students’ technical and 
theoretical algebra knowledge  

Abstract 

The main aim of this paper is theoretical and methodological: to show how The Antropological 

Theory of the Didactics – in particular, the construction of a praxeological reference model – can 

be used as a foundation for developing a diagnostic test tool which examines students technical 

and theoretical knowledge of basic algebra (and related arithmetical knowledge on which initial 

algebra is based). The point is to provide explicit control on what is being tested, for instance, in 

relation to a given national curriculum, and in relation to teaching interventions. 

 

Keywords: Anthropological theory of the didactics, school algebra, praxeological reference 

model, diagnostic test.  

School algebra 

In secondary school, basic algebra is a crucial bridge between arithmetic and more advanced 

subjects involving functions and analytic geometry. To set up algebraic models, it is necessary to 

master arithmetic and algebraic techniques by hand, at to know associated theory like the 

distributive law. But it is a longstanding and widespread problem that large groups of students 

seem to get stuck at this bridge between arithmetic and algebra (Herscovics & Linchevski, 

1994). This has major personal and societal consequences because basic algebra as taught in 

lower secondary school plays a crucial role in upper secondary mathematics and hence for access 

to attractive higher education programmes. In that way school algebra is often described as a 

central gatekeeper (Loveless, 2013).   

The last decades of algebra research have given more attention to the theoretical 

foundations of students’ work. Algebraic transformations are not viewed only as procedures, but 

also as theoretical entities (Kieran, 2007). Kieran divides research in algebraic transformations 

into theoretical, technical, and practical elements. These elements are closely connected, and 
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different institutions within the educational system manage them in subtly different ways. Early 

research on school algebra tended to make a sharp distinction among procedural and conceptual 

approaches. This dichotomy is currently challenged, and the potential of new theoretical and 

methodological approaches become essential to investigate the crucial connections between 

techniques and theory (Schneider & Stern, 2010). The Anthropological Theory of the Didactic 

offers, in particular, a promising new approach to this task. 

To investigate the transition from arithmetic to algebra and to gain knowledge about what 

algebraic techniques and theory are particularly problematic for students in Danish lower 

secondary school, we ask the research question: “How can the Anthropological Theory of the 

Didactics (ATD) and the construction of a praxeological reference model (PRM) be used as 

foundation for developing a diagnostic test tool, to examine students technical and theoretical 

algebra knowledge?” 

 This paper will concentrate on the construction of the PRM and the derived diagnostic test 

tool with preliminary results from the pilot test. The PRM and the results of the diagnostic test 

will be used in a latter study to select research-based resources and design teaching interventions 

to support teachers teaching basic algebra.   

1.2 ATD as theoretical foundation 

The Anthropological Theory of Didactics, subsequently noted as ATD, has emerged as a theory 

of mathematics education. A central feature in ATD is the use of praxeology to model school 

mathematics activity. A praxeology compromise types of task, techniques, technologies, and 

theories (Bosch, 2015). The “practical block” or praxis is formed by the types of task and by the 

techniques used to solve them (Barbé et al., 2005). The “theoretical block” or logos consists of 

technology (discourse on techniques) and theory (more general discourse, based on deductive 

reasoning from definitions and the like). This means the techniques for carrying out tasks are 

explained and justified by a ‘discourse on the technique’ called technology; taking this discourse 

to a more abstract level yields mathematical theory, to validate the technological discourse and to 

connect entire praxeologies (Bosch, 2015).  

The use of praxeology to analyse school algebra has been particularly successful, since the 

birth of ATD as a theoretical foundation for mathematics education research (Bosch, 2015). 

Bosch argues that the explicit reference praxeological models (PRM) concerning school algebra 

provides opportunities to ask research questions that go beyond the assumptions held by the 

school institution itself. At the international level, ATD research has led to significant new 
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insights on the algebra problem, including the frequent disconnectedness of praxeologies taught 

and learnt. 

According to Chevallard (2019), praxeologies are not static, but a dynamic system of 

institutionally situated activities. The explicit construction of a PRM will enable us to analyse 

what arithmetic and algebraic praxeologies are currently taught in the Danish lower secondary 

school according to curriculum, textbook material, and written examination. The PRM will also 

form the foundation for developing a diagnostic test tool, which can “diagnose” what algebraic 

techniques and theory are problematic for students (in our case, Danish grade 7). The result of 

the diagnostic test is analysed in terms of the PRM and may lead to revise the tool (e.g., if 

unexpected techniques appear). In a later study the diagnostic tool and the associated PRM will 

be used to design the intervention based on resources and to analyze the effects of the 

interventions. Thus, the model is the researchers’ explicit reference throughout the four-step 

research process shown in Figure 1.  

 

 

Figure 1. Construction and use of the praxeological model 

Methods to construct the praxeological model 

In Denmark, the so-called “common goals” for mathematics (Danish Ministry of Education, 

2019), constitute the official directives for all primary and lower secondary school. They are 

divided into four parts: competences, number and algebra, geometry and measurement, statistics, 

and probability. The overall goal for algebra is that “the student can apply real numbers and 

algebraic expressions in mathematical investigations”. It is up to textbook authors and teachers 
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to transpose the common goals into teaching practice; in addition to the official goals, they can 

also find some direction in the exercises appearing the national exam after grade 9.  

Our first step in building the PRM was to identify types of tasks appearing in the 2019 national 

exam (Prøvebanken, 2021) and in the textbook series Kontext+ grade 7-9 (Lindhardt et al., 

2021). We began by identifying the tasks in the material associated to arithmetic and algebra, 

understood as tasks solely focused on operations, equations and order relations involving 

numbers (arithmetic), or numbers and literal symbols (algebra). At the level of theory, operations 

are in these two cases obeying the axioms of ordered integral domains or fields. In this paper, we 

do not consider the use of CAS tools and instrumented techniques.  

 The second step is to analyse in terms of task type Ti and corresponding techniques τi used 

to solve Ti. Let us first take an example from arithmetic where students are asked to calculate the 

following tasks (Lindhardt et al., 2021, p.104).  

a. 6 + (−7) 
b. 5 − (−7) 
c. −3 − (−6) + (−4)− 2 

Tasks a. and b. are simple (they can be solved by one technique). Task a. is what we have named 

type T4: addition of negative integer to a positive integer, with corresponding technique τ4: 𝑎𝑎 +

(−𝑎𝑎) = 𝑎𝑎 − 𝑎𝑎; where b. is a task of type T6: subtraction of negative integer from negative 

integer, with corresponding technique τ6: 𝑎𝑎 − (−𝑎𝑎) = 𝑎𝑎 + 𝑎𝑎. Task c. requires both techniques τ4 

and τ6 and is thus a combination of more elementary tasks. 

An example of a type of task from algebra is T15: solve a first-degree equation. Tasks of this type 

appear for instance in the written national 2019 exam (Prøvebanken, 2021) 

Solve the equations 

a. 5𝑥𝑥 + 9 = 34                    𝑥𝑥 = _________ 
b. 3𝑥𝑥 + 4 = 6𝑥𝑥 − 5            𝑥𝑥 = _________           

They can be solved by the technique τ15: involving addition, subtraction, multiplication, and 

division on both sides of the equal sign.  

In general, exercises can contain several questions, where not all questions can be answered by a 

single technique. This means, that once a model of types of tasks and corresponding techniques 

has been established, more complex questions must be decomposed in tasks of the types 

established (Winsløw et al., 2013). It is relatively straightforward to identify types of tasks and 

techniques in arithmetic and algebra as shown above (cf. Wijayanti & Winsløw, 2017). The next 
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step is to identify themes (groups of practice blocks unified by a technology) and sectors (groups 

of themes unified by a theory). 

1.2.1 Example of PRM theme and sector 

The problem of ordering two given fractions can, according to special cases, necessitate different 

techniques. It thus leads to group of practices which are taught together and are unified by a 

shared discourse about techniques, involving characteristics of the special cases, and descriptions 

of the techniques. Table 1 is type of task Ti and corresponding techniques τi from the analysed 

textbook material and written exam and gives an overview of the theme of PRM according to 

fractions.   

Table 1. Theme of PRM based on textbooks (Kontext) and written exam (FSA) according to fractions  

Type of task Techniques Kon-
text+

5 

Kon-
text+

6 

Kon-
text+

7 

Kon-
text+

8 

Kon-
text+

9 

FSA 

2020
Dec 

FSA 

2021
May 

T19: Given two-unit 
fractions 1

𝑎𝑎
 and 1

𝑏𝑏
 , 

which is largest 

τ19: The fraction with the 
lowest denominator is 
largest i.e., 𝑎𝑎 < 𝑎𝑎 ⇒ 1

𝑎𝑎
> 1

𝑏𝑏
 

       

T20: Examine which 
fraction with like 
denominator and 
different numerators, 𝑎𝑎

𝑐𝑐
 

and 𝑏𝑏
𝑐𝑐
 is largest. 

τ20: The fraction with the 
highest numerator is largest 
i.e., 𝑖𝑖𝑖𝑖 𝑎𝑎 < 𝑎𝑎 ⟹ 𝑎𝑎

𝑐𝑐
< 𝑏𝑏

𝑐𝑐
 

 

       

T21: Examine which 
fraction with like 
numeration and 
different denominators 
fraction 𝑎𝑎

𝑏𝑏
 and 𝑎𝑎

𝑐𝑐
 is 

largest. 

τ21: The fraction with lowest 
denominator is largest i.e., 
𝑖𝑖𝑖𝑖 𝑎𝑎 < 𝑎𝑎 ⟹ 𝑎𝑎

𝑏𝑏
> 𝑎𝑎

𝑐𝑐
 

 

       

 

It is characteristic of Danish textbooks that the same types of tasks reappear year after year, 

while the theme as a whole may still be relatively disconnected. This theme is a part of a larger 

“fraction sector”, unified by a theory which involves both informal and more formal 

representations and properties of fractions, from addition of simple fractions with pizza diagrams 

to calculation rules given with algebraic symbolism.  
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1.3 Methods to construct the diagnostic test tool 

The aim of the diagnostic test tool is to detect what arithmetic and algebraic techniques are 

particularly problematic for Danish students at early lower secondary school, and to get insight 

in the students’ theoretical knowledge especially in relation to basic algebra. The development of 

the diagnostic test tool is based on the PRM and was inspired by an earlier project by Cosan 

(2021) on middle school arithmetic.  

Items designed to test techniques are straightforward to construct. And several items can be 

included to investigate how variations influence on success rates. For example, the item 

“Compute 6 + (−5)“ represents the type of task T4: addition of negative integer to a positive 

integer, as defined above.  

It is more difficult to design items that detect students’ theoretical knowledge which includes 

technology to describe and explain techniques. The item “Explain why 𝑎𝑎 − (−𝑎𝑎) = 2𝑎𝑎” requests 

from students a piece of discourse justifying the algebraic rule, which may appeal to more or less 

formal theoretical principles. For instance, some students may refer to “two minuses can be 

replaced by a plus” as an overarching principle in such contexts; this could, in fact, be part of a 

theory that some students hold. In the ATD sense such theory elements are empirical objects, to 

be discovered and traced. 

Items can also simply request a description of a technique (i.e., a technology), e. g. “Explain how 

you would determine which of the fractions 2
5

 𝑎𝑎𝑛𝑛𝑑𝑑 3
5
 is largest” 

1.4 Results from the pilot test of the diagnostic test tool 

The diagnostic test has been pilot tested by 25 grade 7 students (12–13-year-old) in lower 

secondary school in the capital of Denmark. The students got 45 min. to do the 67-item paper 

and pencil test.  

Table 2. Sum of type of answers in the test 

Correct answer Incorrect answer No answer Sum  

455 306 914 1675 

 

Table 2 shows that more than half of the items has not been answered by the students. Despite 

this, it is possible to give some preliminary results. The following are examples of analyses of 

test answers in relation to the previously selected examples from the PRM.  
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Table 3. Item and associated sum of answers in the test 

Item Item number Correct 

answer 

Incorrect No answer 

6 + (−5) = 1.4 20 2 3 

7 − (−9) = 1.5 8 16 1 

 

Table 3 shows that almost all the students can solve the item of task type T4: addition of negative 

integer to a positive integer. But only a third of the students could solve the item of task type T6: 

subtraction of negative integer from negative integer. This result indicates that students know 

that adding opposite is the same as subtraction, but they cannot apply the rule −(−𝑎𝑎) = 𝑎𝑎.  

By varying the items given for a specific type of task, we can also discover specific features of 

type of task. For example, the test contains variations of the task type T15: solve a first-degree 

equation (discussed above). These variations result in hugely different success rates.  

 

Table 4. Test results of variations of the task type T15 

Item Item 

number 

Correct 

answer 

In-correct No answer 

36 − _____ = 29 1.1 21 2 2 

8 + 4 = _____ + 5 1.6 4 18 3 

_____− 32 = 45 2.1 23 1 1 

2𝑥𝑥 = 10 2.5 10 1 14 

7𝑥𝑥 − 7 = 13 − 3𝑥𝑥 4.7 8 9 13 

 

When comparing the results from item number 1.1, 1.6 and 2.1, item number 1.6 has 

significantly fewer correct answers. One possibly crucial difference between 1.6 and the other 

questions is the location of the unknown. In 1.6 the unknown is located on the right side of the 

equal sign. That this could make a big difference is confirmed by a longitudinal examination of 

how middle school students understand the equal sign and equivalence of equations (Alibali et 

al, 2007).  

The purpose of item number 3.7 is to get insights in students’ argumentation for which fraction is 

largest. And we get answers like: “If the denominators are the same, I just look at the numerators 

which are the highest” and “I look at the denominators and if the fractions have the same 
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denominator, then I will look at the numerator which one is the largest”.  With such items, we 

can detect not only a (correct) technique but also what it is, and a level of technology.  

In the following two examples, the student’s argumentation is based on pizza representations of 

fractions, which are also extensively used in Danish textbooks. Figure 2. “I want to draw”. 

Figure 3. “By seeing it as a circle and look where there are most fields that are filled”. 

 

Figure 2. Student answer to question 3.7     

  

    

Figure 3. Student answer to question 3.7 

 

In Figure 2, we can see the representation serves as an argument but in Figure 3, this wordless 

technology fails because of missing the usual convention, that the circle must be divided into 

equal parts. The diagrammatic representation has evident forces in giving meaning to fractions 

(between 0 and 1) for young children; but the division of a circle into five equal parts is also a 

task which contain other meanings (including angles etc.) that are in some sense irrelevant to the 

task. Varying this task to include fractions with large denominators or nominators would 

evidently also make this technology fail.  

1.5 Conclusion 

In this paper, we have shown by a few examples, how ATD and the construction of a PRM, can 

be used as a foundation for developing a diagnostic test tool, to examine students technical and 
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theoretical knowledge. By first constructing the PRM based on textbook material, written 

examination, and common core. Then grouping the task and corresponding techniques in themes 

and sectors according to shared technology and theory. The PRM is then used to design the 

diagnostic test items in line with the tasks, techniques, and level of theory in the PRM. In that 

way the diagnostic test is aligned with the knowledge to be taught and provide explicit control on 

what is being tested. 

Among the examples from the pilot test, we discussed the students’ difficulties with relating 

subtraction and additive inverse, and especially with repeated additive inversion. These examples 

indicate that the diagnostic test, based on the PRM, can be used to identify significant obstacles. 

This is crucial for the next steps in our doctoral project.  

The next step in the project is to apply the results from the pilot-test to inform and strengthen the 

PRM. Then to revise the diagnostic test tool and complete the final test in four classes, before 

and after the teaching intervention. The overall aim is to investigate the transition from 

arithmetic to algebra and to explore if and how interventions with research-based material can 

support teachers’ efforts to teach basic algebra.   
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Paper V 

The role of algebraic models and theory in Danish 
lower secondary school. 

Abstract 

In this paper, we address the external didactical transposition of algebra in Danish lower 

secondary school. The theory of praxeology and especially the construction of a praxeological 

reference model enable us to analyse what elementary algebra praxeologies are currently to be 

taught in Danish lower secondary school according to curriculum, textbook material, and the 

written examination at the end of grade 9. To exemplify the set of conditions and constraints that 

affect the role of algebraic modelling and level of theory in praxeology we will use “algebra 

models in geometry” as a case. 

Keywords: External didactic transposition, praxeological reference model, elementary algebra 

Introduction and research question  

In the written examination after lower secondary school, the majority of Danish students struggle 

with setting up an expression for the area and perimeter of a polygon with only vertical and 

horizontal sides, when given symbols for the relevant lengths, Figure 3.  The lack of knowledge 

on how to use algebra as a modelling tool is a central issue in the current debate on the “algebra 

problem” in Danish lower secondary school (Østergaard, 2021). The generally modest algebra 

skills of students become visible not only at the written exam after lower secondary school. In 

secondary school, basic algebra is a crucial bridge between arithmetic and more advanced 

subjects involving functions and analytic geometry. According to Strømskag and Chevallard (to 

appear) the problem is not only a Danish one: also, in France and Norway, school algebra has 

become a set of formal exercises, rather than a modelling tool; they argue for “an imperative 

revitalization of the elementary algebra curriculum” (Strømskag & Chevallard, 2022, p. 1).  

 In Denmark, the so-called “common goals” for mathematics constitutes the official 

directives for primary and lower secondary school. The overall goal for algebra after lower 

secondary school (grade 9), is that “the student can apply real numbers and algebraic expressions 

in mathematical investigations” (Education, 2019). However, teachers base their teaching on 
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textbooks and national exams, which are often more modest in their demands when it comes to 

algebra. Danish textbooks are crafted by “leading” math teachers, based on personal didactical 

ideas and experiences. The teachers also find some directions in the exercises appearing in the 

national exam after grade 9. To get insights in the set of conditions and constraints that affect the 

knowledge to be taught, we will look at the external didactic transposition (Bosch et al., 2021), 

and explore the research question: What is the role of algebraic models and theory in Danish 

lower secondary school? 

Theoretical framework and methodology 

As a teacher educator, textbook writer, and Ph.D. student, I am formed by the set of institutions I 

am acting in. However, the use of the Anthropological Theory of the Didactic as theoretical 

framework for my doctoral thesis gives me the opportunity as a researcher to detach myself from 

any specific institutional viewpoint (Bosch, 2015). To distance from common-sense models used 

within understand the institutions, we use modelling in the ATD sense as a didactic tool to 

structure and integrate modeling processes in a more general epistemological model of 

institutional mathematical activities (Garcia et al., 2006).   

The overall aim of the doctoral project is to investigate the transition from arithmetic to 

algebra and to explore if and how research-based teaching materials can support and direct 

teachers’ efforts to teach basic algebra. In this first part of the study, we study only the external 

transposition to get insight into the set of conditions and constraints that affect the knowledge to 

be taught (Bosch et al., 2021). 

 To investigate the role of algebraic models and theory in Danish lower secondary school, 

we build a praxeological reference model (PRM) based on curriculum, textbook material, and 

written examination. The praxis is formed by type of tasks and by the techniques used to solve 

them, and logos consisting of technology and theory (Barbé, Bosch, Espinoza & Gascón, 2005). 

The explicit construction of a PRM will enable us to analyse what arithmetic and algebraic 

praxeologies are currently to be taught in Danish lower secondary school. The PRM includes 

themes such as and algebraic models in geometry. We will consider this theme as a case example 

and refer to the more comprehensive PRM (not presented here) by type of tasks Ti and 

corresponding techniques τi.  
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Algebraization in geometry 

For the analyses one of the most common textbook material Kontext+ grade 5 to 9 (Lindhardt, 

Thomsen, Johnsen & Hansen, 2021) and the national 2019 written paper and pencil exam 

(Prøvebanken, 2021), are used. In the analyses two specific types of “algebra models in 

geometry” appear (among others). The first type of tasks is “Determine the perimeter of the 

polygon” denoted T27, where the technique τ27: Add the side lengths of the polygon, will solve 

this type of tasks. The second type of tasks is T28: Determine the area of a polygon with all sides 

being either parallel or orthogonal, with the corresponding technique, τ28: Calculate the area by 

using the formula of rectangle area together with the additive principle (the area of a disjoint 

union of polygons is the sum of the area of those polygons). At the level of algebraic theory, the 

distributive law appears.  

 We now analyze an example of each of this type of tasks and give an example of the 

theoretical approach. To analyze the examples, we distinguish between “arithmetical rules” and 

“algebraic formulas” and the essential notion of parameters in line with Strømskag and 

Chevallard (2022).  

Geometric multiplication of binomials 

The first example is from Kontext+8 a grade 8 textbook material.  

 

 

 

Figure 1. Floor with four rooms (Lindhardt et.al. 2021, p.87) 

 

a) Show from the drawing, why  (𝑎𝑎 + 𝑎𝑎) ∙ (𝑐𝑐 + 𝑑𝑑) = 𝑎𝑎𝑐𝑐 + 𝑎𝑎𝑑𝑑 + 𝑎𝑎𝑐𝑐 + 𝑎𝑎𝑑𝑑. 

b) How large is the area of the four rooms if  𝑎𝑎 = 5,𝑎𝑎 = 25, 𝑐𝑐 = 10 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑 = 40?   

 

To answer question a., we can τ28 with the given subdivision, and no subdivision. For the latter 

approach, the side lengths to be used are 𝑙𝑙 = 𝑎𝑎 + 𝑎𝑎 and 𝑎𝑎 = 𝑐𝑐 + 𝑑𝑑. Then we get that the area is 

𝐴𝐴 = 𝑙𝑙 ∙ 𝑎𝑎 = (𝑎𝑎 + 𝑎𝑎) ∙ (𝑐𝑐 + 𝑑𝑑). To express the area of the four small rectangles we use the 

formula of the area of a rectangle for each of the small rectangles and sum these up. It means that 

can deduce the formula from algebraic model of area, with no need to manipulate the algebraic 

expression.  
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In question b. we must interpret what is being described as rooms to be the small rectangles. 

Then we can use the algebraic model of area of a rectangle, and by inserting the definite 

numerical values we get the numeric areas. This is a technique taught in grade 5, if following the 

textbook cited above.  

Distributive law 

The distributive law is the crucial links between addition and multiplication (and a field axiom) 

which forms part of the level of theory of both arithmetic and algebra in the PRM. In the 

textbook the point is made that “you can use geometric figures to model arithmetic rules by 

letters”. In fact, what the example in Figure 2 does is to deduce an algebraic law by using τ28 on 

a particular geometric figure. 

 Figure 2. Geometric algebra (Lindhardt et.al. 2021, p.95) 

Specifically, τ28 tells us that the area of the big rectangle is 𝑎𝑎 ∙ 𝑐𝑐 + 𝑎𝑎 ∙ 𝑐𝑐, and it is also (𝑎𝑎 + 𝑎𝑎) ∙ 𝑐𝑐. 

The generality and variations of the distributive law stays implicit, and the students are not 

introduced to “distributivity” as an assumption or axiom in algebra. It is not visible for the 

student that the example is special (for instance, assumes that 𝑎𝑎, 𝑎𝑎 > 0).  

Perimeter and area of an irregular octagon 

Our last example is from the national written paper and pencil examination after grade 9 

(Prøvebanken, 2019). Figure 3 shows an octagon with marked sides of length 𝑎𝑎 and 𝑎𝑎. 
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Figure 3. Irregular octagon  

 

a) The perimeter of the octagon is _____________ 

b) The area of the octagon is ______________ 

 

Here, c. is of the type T27, and τ27 yields that the circumference is 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 +

𝑎𝑎; then, another algebraic technique (τ15: collect equal terms) can be used to get the final result 

4a+4b.  

Question d. is again of type T28.  Here must model the area, by dividing the octagon into 

rectangles, which can be done in several different ways, resulting in expressions such as 

(𝑎𝑎 + 𝑎𝑎)2 − 2𝑎𝑎2 or 𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎(𝑎𝑎 − 𝑎𝑎), which of course can both be reduced to 𝑎𝑎2 − 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 

by τ15. 

Discussion and conclusion 

In the Danish curriculum for grades 6 to 9, the aim of the topic “Formulas and algebraic 

expressions” phase one is that “the student can describe connections between simple algebraic 

expressions and geometric representations” (Education, 2019).  

The previous textbook examples provide examples of the use of algebraic models in geometry. 

Types of tasks in the theme “Algebra models in geometry” are mostly formal exercises solved by 

inserting values in known or given formulae. The level of theory is implicit and algebraic 

manipulation occurs rarely (the examples above are thus somewhat special). When algebra turns 

into a modelling tool, it is often in relation to simple geometric situations. And even though such 

modelling exercises do occur in the textbook material, the results from the written examination, 

where only 9.6% could answer questions c. and d. (above) properly, suggest that algebraic 

models and theory are not really a part of the students’ topos (Chevallard, 2019).  
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