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"One belief, more than any other, is responsible for the slaughter of individuals
on the altars of the great historical ideals - justice or progress or the happiness
of future generations, or the sacred mission or emancipation of a nation or race
or class, or even liberty itself which demands the sacrifice of individuals for the
freedom of society. This is the belief that somewhere, in the past or in the future,
in divine revelation or in the mind of an individual thinker, in the pronouncements
of history or science, or in the simple heart of an uncorrupted good man, there is
a final solution."

Isaiah Berlin, 1969

"Mathematicians can and do fill in gaps, correct errors, and supply more detail
and more careful scholarship when they are called on or motivated to do so. Our
system is quite good at producing reliable theorems that can be solidly backed
up. It’s just that the reliability does not primarily come from mathematicians
formally checking formal arguments; it comes from mathematicians thinking
carefully and critically about mathematical ideas."

William P. Thurston, 1994
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Preface

This thesis is the culmination of my three distinct academic programs: a BA

in philosophy, a BSc in mathematics, and a MSc in insurance mathematics. I

firmly believe that this project, in its present form, would have been impossible

without the unique combination of the three disciplines.

My naïve understanding of mathematics, shaped during my Bachelor of Arts

(Philosophy), was soon disrupted when I encountered mathematics in practice.

I had assumed formalism to be the essence of mathematics, an ontology in

itself. Instead, I discovered that formalism is a tool, not an end. Practical

considerations often take precedence over strict adherence to rigor and precise

definitions. What I once perceived as "categorical mistakes" turned out to be

deeply embedded features of mathematical thinking.

This realization was a turning point. The illusion of analytical philosophy gave

way to a richer understanding: intuition is not an error, but an essential part of

mathematical practice. Formalism is merely one epistemic tool among many; it

does not define the entirety of mathematics, nor should it be its only ideal.

In this thesis, I explore one of the clearest examples I have found of epistemic

pluralism in mathematics: the dynamic approach. This approach exemplifies

the tension between rigor and intuition. My hope is to show that they are not

mutually exclusive but complementary aspects of the same mathematical prac-

tice. By embracing both, one can deepen one’s understanding of mathematics

as a discipline of both precision and utility.

v





Acknowledgements

I would like to thank all my teachers in both Philosophy at the Department
of Communication, as well as Mathematics and Insurance Mathematics at the
Department of Mathematical Sciences. The interdisciplinary training I received

from both programs has been instrumental in shaping this project. A special

thanks to Rasmus K. Rendsvig and Vincent F. Hendricks for encouraging me to

pursue an education in formal disciplines, enabling me to address philosophical

endeavors with greater precision.

I am deeply grateful to Frederik R. Klausen for persistently challenging me to

question whether I was pursuing trivial insights through speculative method-

ologies, a potential pitfall in both philosophy and mathematics. I am both

surprised and satisfied that you found this endeavor enlightening.

I am grateful to the Study Group in the Philosophy of Mathematical Practice for

the opportunity to present this project in its early stages. A special thanks goes

to Martin P. Speirs for prompting reflections on broader implications beyond

the case of stochastic analysis and to Henrik K. Sørensen for highlighting the

historical significance of the topic.

Thank you to the organizers of the European Summer School on the Philosophy
of Mathematics at the University of Vienna in September 2024 for granting me

admission to the program. The lectures by Yanic Hamami and Matthew Inglis

were particularly influential in shaping the philosophical focus of this project,

especially regarding mathematical rigor and its epistemic dimensions.

I owe immense gratitude to my two supervisors:

To Jesper L. Pedersen, thank you for introducing me to the dynamic approach

within the context of stochastic processes in life insurance and for guiding me

in refining the scope of the case study presented here.

vii



To Mikkel W. Johansen, it is difficult to overstate your influence on my aca-

demic journey into the philosophy of mathematical practice. Your unwavering

support as a teacher, employer, and supervisor has been instrumental in my

development as a philosopher. Your encouragement, critical feedback, and

belief in my abilities have profoundly shaped not only this project but also my

broader academic perspective.

viii



Abstract

This thesis is a case study of the dynamic approach in stochastic analysis. As a

response to rigor pluralism in Tanswell (2024), I present two proofs from the

practice of mathematics to argue for epistemic value pluralism.

The contemporary discussion of mathematical rigor will be presented through

advocates of opposing views. I argue that the standard view of rigor presents

an operational conception that enables a clear demarcation of rigorous and

unrigorous proofs. The success and failure in ascribing rigor present the

possibility to address other valuable qualities of unrigorous proofs. Unlike

rigor pluralism, which risks collapsing into semantic relativism, epistemic value

pluralism better accommodates the diverse epistemic functions of proofs within

mathematics.

The analysis and discussion are anchored in a case that presents two proofs of

the same theorem in stochastic analysis: one by the dynamic approach and the

other by the monotone class theorem. Although the proof by the monotone class

theorem is rigorous, the proof by the dynamic approach, though unrigorous,

demonstrates significant epistemic value by fostering intuition. I argue that

such unrigorous proofs, although lacking precision, have an indispensable

utility for mathematics.

Furthermore, I explore the ontological implications of semantic externalism,

emphasizing how externalization of mathematical objects beyond their defi-

nitions allows complementary characterizations. By this, producing deeper

familiarity with the concept.

In conclusion, epistemic value pluralism provides a robust framework for

analyzing mathematical practice, demonstrating how unrigorous proofs, such

as the one by the dynamic approach, offer indispensable utility by fostering

intuition.
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1Introduction

This thesis explores epistemic considerations within the practice of stochastic

analysis, focusing on the dynamic approach in martingale theory. By examining

two proofs of the same theorem, one by the dynamic approach and one by the

monotone class theorem, the aim is to highlight the unique epistemic functions

of the dynamic approach.

The motivation for this analysis stems from a response to rigor pluralism as

presented by Fenner S. Tanswell (2024). Although I share the goal of address-

ing the tension between the articulated standard of rigor1 in mathematical

practice and insights from the philosophy of mathematical practice regarding

proofs’ plurality of purposes, I argue that semantic relativism, as proposed

by Tanswell, falls short of providing the conceptual tools necessary to fully

analyze this duality. Instead, I propose epistemic value pluralism as a more

effective framework to resolve this tension.

To contextualize this argument, I review competing perspectives on rigor in

relation to Tanswell, drawing on Yacin Hamami and Jody Azzouni, both of

whom are explicitly addressed by Tanswell and classified as proponents of

the standard view of rigor. Although the standard view of rigor represents an

orthodoxy in the philosophy of mathematical practice (Hamami, 2022, p. 409),

it serves as a suitable classification tool for this analysis. However, I diverge

from Tanswell and Hamami by interpreting Azzouni’s work as representing a

view of proofs rather than strictly adhering to the standard view of rigor. That

said, Azzouni’s characterization of proofs is a foundational assumption of the

standard view, which warrants its inclusion in my exploration of competing

theories in Chapter 2. In addition, Azzouni presents the puzzle of informal
mathematics that will function as a guiding tool for the exploration of rigor in

Chapter 2 as well as a motivation to present the case in Chapter 3.

Before presenting the case study in Chapter 3, I introduce the empirical findings

of Matthew Inglis and Andrew Aberdein. This inclusion reflects the spirit of the

philosophy of mathematical practice, which seeks to complement conceptual

speculation with empirical insights from mathematical practice (Carter, 2024,

pp. 2–3). Moreover, I refrain from offering normative conclusions about

1English: Rigour
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what mathematicians should do. Instead, my aim is to uncover the implicit

epistemology within the practice, asking: What worldview does an epistemic

agent in mathematical practice implicitly endorse?

In Chapter 3, I dive into the practice of stochastic analysis as presented by

Per K. Andersen, Ørnulf Borgan, Richard D. Gill and Niels Keiding. This case

study functions as my primary empirical source. After presenting the general

results in Inglis and Aberdein (2015), I zoom in on one particular subfield of

mathematics to identify the use of unrigorous tools as well as to justify their

use. Andersen et al. (1993), which explicitly employs heuristic tools, serves

as a rich resource to understand unrigorous mathematics. This aligns with

the notion that edge cases can reveal smaller tendencies in broader practice

(Flyvbjerg, 2006, p. 229). To fully illustrate the case, I actively reconstruct two

proofs: one by the dynamic approach using conceptual tools from Andersen

et al. (1993), and another by the monotone class theorem with techniques

from Schilling (2005). Although reconstruction risks misrepresentation, it

is necessary to compare these proofs effectively. To maintain fidelity to the

source, I directly refer to Andersen et al. (1993) throughout Chapter 3.

One challenge encountered in this case study is the inconsistency in terminol-

ogy between sources. For example, "formal" and "informal" proofs are used

differently in various contexts. In Chapter 2, I harmonize these terms where

possible, defining a "formal proof" as one adhering to the formal definition and

categorizing all other proofs as "informal". A "rigorous proof" is then a subset

of proofs that includes some informal proofs and all formal ones, as illustrated

below. This contrasts with the terminology of Andersen et al. (1993), where

"formal" and "informal" align more closely with "rigorous" and "unrigorous". To

avoid misrepresenting Andersen et al. (1993) or engaging in circular reasoning

- concluding that unrigorous proofs are instances of unrigorous mathematics -

I preserve their original terminology in Chapter 3 and ask the reader to remain

aware of these changes in language.

2 Chapter 1 Introduction



In Chapter 4, I apply Hamami’s framework to analyze the two proofs from

Chapter 3, concluding that the proof by the dynamic approach is unrigorous,

while the proof by the monotone class theorem is rigorous. Drawing on

the four-dimensional matrix of terms of evaluation presented in Inglis and

Aberdein (2015), I argue that both proofs have value for mathematical practice,

an insight more effectively captured through epistemic value pluralism than

through the semantical relativism of rigor pluralism.

Finally, in Chapter 5, I extend the discussion to ontological considerations,

examining the externalization of mathematical objects from their definitions

within the framework of semantic externalism, a contemporary position in the

philosophy of language. This discussion broadens the implications of my case

study, shedding light on the epistemic roles of characterizations in mathematics.

Although I do not take a definitive position on the ontological implications of

these findings, I outline potential directions for future research.

This case study highlights the various epistemic functions of proofs in stochastic

analysis, ultimately advocating epistemic value pluralism as the preferred

framework for capturing this plurality. By presenting a concrete case from

mathematical practice, this paper contributes to the ongoing discussion of

rigor at the intersection of a case from mathematical practice and an analysis

from philosophy.
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2Epistemic Value Pluralism

In exploring two fundamentally different conceptions of liberty — negative
liberty as freedom from interference, and positive liberty as the freedom to be

one’s own master or legislator — Isaiah Berlin introduces the ideas of value
monism and value pluralism. The former, rooted in ancient Greek philosophy,

posited that the good, the right, and the beautiful ultimately refer to the same

thing. It asserted that no values can ever conflict with one another; otherwise,

the world would be chaos, not cosmos.

The metaphysical tradition, from Plato to Hegel, rejected the idea that maximiz-

ing one value might necessitate abandoning other goals. For these philosophers,

the coexistence of multiple values was regarded as a formal contradiction: a

"metaphysical chimera" (Berlin, 1969, p. 28).

The reduction of all questions of value to a single principle defines value

monism. Its counterpart is value pluralism, that recognizes that human goals

are numerous and diverse in nature. Value pluralism acknowledges the com-

plexity and multifaceted nature of our normative concerns, often necessitating

prioritizing one value over another.

Value monism can result in conceptual equivocation, forcing diverse ideals

to conform to a single framework. Berlin highlights how positive liberty is

sometimes prioritized at the expense of freedom to serve other fundamental

needs, such as equality, happiness, or security (Berlin, 1969, p. 172). Conse-

quently, he rejects positive liberty in favor of negative liberty, while advocating

for value pluralism — where negative liberty becomes one among many values

pursued in a just society.

In this chapter, I will explore the diverse needs of mathematical practice.

Epistemic value pluralism rejects the reduction of normative concerns to a

5



single guiding principle, contrasting with epistemic value monism, which I

critique in the form that elevates rigor as the sole standard:

"[M]athematics ought to be done in a way to meet the standards

of rigour" (Tanswell, 2024, p. 7).

This represents a specific form of epistemic value monism, where rigor is

regarded as the only value. While other values could theoretically occupy this

role, this particular emphasis on rigor is the most prominent. It is presented in

the works of Hamami (2022) and Tanswell (2024), discussed in Section 2.2 and

Section 2.3. Accordingly, I will treat epistemic value monism as synonymous

with the view that rigor serves as the sole standard for mathematical practice.

However, scholars have argued that proofs fulfill a range of epistemic purposes

(Dutilh Novaes, 2020, p. 205). Their creation, evaluation, and application

are shaped by the contexts in which epistemic agents engage with them. For

instance, the didactic aims of classroom instruction contrast sharply with the

exploratory endeavors of individual mathematicians. I will argue in Section 2.4

and Chapter 3 that purposes are not merely reducible to context; even within

the same context, different proofs may serve distinct epistemic objectives.

If unrigorous proofs better achieve specific epistemic goals, this reflects a

prioritization of other valuable qualities in proofs. The essence of epistemic

value pluralism lies in acknowledging that while rigor is undoubtedly one value
of mathematical practice, it is not the sole criterion for evaluating proofs.

2.1 Mathematical Proofs
Students of mathematics are introduced to an explicit definition of a proof.

At University of Copenhagen, this takes place in an undergraduate course on

discrete methods in mathematics (Universitet, 2019, p. 4).

A formal proof is defined as a specific form of valid inference, that is, a

deduction from a finite set of premises p1, p2, . . . , pn to a conclusion q. For

such a deduction to qualify as a proof, each premise pi must be an axiom of

the theory, a previously proven proposition, or derivable from the premises

p1, p2, . . . , pi−1 (Lützen, 2019, pp. 15–16).

This aligns with David Hilbert’s view of a formalized proof as a concrete

string of symbols (Hilbert, 1926, p. 186). However, since Immanuel Kant,

philosophers have criticized this interpretation of proofs (Azzouni, 2009, p. 9).

6 Chapter 2 Epistemic Value Pluralism



Mathematical practice cannot be reduced to analytic a priori derivations from

axioms and lemmas; instead, an "explanatory gap" exists in the constructive

nature of mathematics (Azzouni, 2009, p. 10). Kant emphasized this when he

argued that mathematics is guided by intuition1 — epistemic agents’ perception

of space and time (Kant, 1781/2002, pp. 477–478). However, mathematics

has evolved beyond its traditional domains of geometry and arithmetic as

concrete descriptions of the world. In this sense, Kant’s account appears less

convincing for modern mathematics, which often involves objects constructed

independently of the perception of space and time (Azzouni, 2009, p. 9).

Translating informal mathematics into formal language does not resolve the

epistemic challenge of how informal proofs generate conviction and foster

greater understanding than their formal counterparts (Azzouni, 2009, pp. 20–

21). Despite this, the formal proof remains the articulated norm (Azzouni,

2009, p. 23), even though it may not be the internalized norm. Mathemati-

cians often engage in informal practice, which raises the puzzle of informal
mathematics: How do informal proofs generate conviction, and how are they

related to formal proofs?

2.1.1 Burgess’s Standard
A solution to the puzzle of informal mathematics is presented by John P.

Burgess (2015), who asserts that a proof is genuine if it is rigorous. I will call

this Burgess’s standard:

"The quality whose presence in a purported proof makes it a gen-

uine proof by present-day journal standards, and whose absence

makes the proof spurious in a way that if discovered will call for

retraction, is called rigor" (Burgess, 2015, p. 2).

This introduces a new quality distinct from formality. Unlike formality, which

is a simple matter when to ascribe — either inferences are explicitly written in

modus ponens, or they are not — the necessary and sufficient conditions for

ascribing rigor are more ambiguous. As I will present in Section 2.3, there are

multiple interpretations of what rigor means.

One interpretation of Burgess’s standard is that whatever is published and

not retracted is rigorous, since it is judged by the mathematical practice as

fulfilling the criterion of good mathematics. This is the standard-as-rigor

1German: Anschauung
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interpretation, since it assigns the title of rigor to all proofs that live up to a

standard established by mathematical practice.

Alternatively, Burgess’s standard can be interpreted as suggesting that rigor

is a specific quality, and if a proof possesses it, the proof meets present-day

journal standards. This is the rigor-as-standard interpretation, which treats

rigor as the defining quality of good mathematical practice.

Both interpretations are forms of epistemic value monism, but differ in their

conception of rigor. In the standard-as-rigor interpretation, rigor denotes

a composite concept that encompasses the qualities found in actual proofs

accepted by mathematical practice. In contrast, the rigor-as-standard inter-

pretation treats rigor as a singular quality that all good proofs should possess,

imposing an imperative for mathematical practice to fulfill this criterion.

Burgess’s solution to the puzzle of informal mathematics is rigor. In the

standard-as-rigor interpretation, the descriptive account of what rigor is seems

problematic. Objects possess qualities independently of whether or not they

are judged to have them. Nevertheless, this interpretation comes up implicitly

in discussions of rigor as I will show in Subsection 2.3.5. However, the

rigor-as-standard interpretation prescribes how epistemic agents should do

mathematics; it does not explain what rigor is or how it relates to formal

proofs.

2.1.2 The Derivation-indicator View
Azzouni has another approach to the puzzle of informal mathematics. Contrary

to how he is portrayed in Hamami (2022) and Tanswell (2024), Azzouni does

not present a theory of rigor. Instead, he interprets a distinction introduced by

Yehuda Rav between proof and derivation. These are defined as, respectively,

the informal mathematical discourse with irreducible semantic content and

the purely syntactical objects within formal systems (Azzouni, 2004, p. 82).

A proof is an argument that indicates the existence of a derivation (Azzouni,

2004, p. 88). Not a mere abbreviation of a derivation (Hamami, 2022, p. 412);

nor does it explicitly specify which derivation is indicated (Azzouni, 2004,

p. 99). Instead, a proof plausibly suggests the existence of a derivation.

Although formalists like Hilbert believed that formalizations of proofs into

derivations had epistemic advantages (Azzouni, 2004, p. 101), mathematical

practice often prioritizes proofs over derivations (Azzouni, 2004, p. 96). The
derivation-indicator view explains this by highlighting the semantic richness of

8 Chapter 2 Epistemic Value Pluralism



informal mathematics, which resists reduction to the purely syntactic frame-

works of logic and set theory. This insistence on nonreduction preserves the

holistic nature of mathematical concepts (Azzouni, 2004, p. 99).

In Azzouni’s discussion of informal proofs, he does not explicitly address rigor.

The link to rigor comes from Azzouni quoting Donald MacKenzie, who uses

"rigorous-argument proof" as proof and "formal proof" as derivation (Azzouni,

2004, pp. 85–86). However, this broad application of "rigor" risks diluting

its meaning. In Azzouni’s framework, the term "rigor" appears to apply to all

informal proofs (Azzouni, 2004, p. 96), leading to the conclusion that all proofs

are rigorous on MacKenzie’s account. This aligns with the standard-as-rigor

interpretation. However, in the rigor-as-standard interpretation, Azzouni’s

account ceases to address rigor directly and becomes merely a theory of what

constitutes a proof. To fully address the concept of rigor, I must look further.

In Section 2.2, I turn to Hamami’s explicit treatment of rigor, before exploring

Tanswell’s broader reflections in Section 2.3.

2.2 Rigorous Proof
In Hamami (2022), a precise formulation of the so-called standard view of
rigor is presented by breaking it down into three components.

The descriptive part: An empirical claim of how and when epistemic

agents in mathematical practice judge the proofs to be rigorous.

The normative part: A conceptual account specifying the necessary and

sufficient conditions for a proof to be rigorous.

The conformity thesis: A relation between the descriptive part and the
normative part.

Hamami states that the standard view has a pragmatic motivation. The ideal

of formal proof and the fact that it is unattainable in practice present a tension.

The standard view presents a middle ground, defining a proof as rigorous

if it is routinely translated into a formal one (Hamami, 2022, p. 414). This

solution to the puzzle of informal mathematics is simple: Informal proofs are

convincing to the extent that they are related to formal ones by being routinely

translatable to them. Let us dive into what that means now.

2.2 Rigorous Proof 9



2.2.1 Descriptive Part of Rigor
When a proof is presented to a mathematician, she will eventually judge

it as valid or invalid. This process, referred to as verification, should not

be confused with the verification of a proposition in empirical science. By

verification, Hamami designates the analysis of a proof — i.e., an argument —

rather than a proposition.

A proof can be decomposed into inferences, which are classified as either imme-
diate or intermediate. An inference is immediate if it can be verified without

introducing additional steps; otherwise, it is intermediate. Using this termi-

nology, Hamami introduces the DV schema as the structure of any descriptive

part of rigor. It consists of two processes: decomposition and verification. The

former involves breaking intermediate inferences into smaller steps, while the

latter verifies inferences as valid or invalid.

Decomposition Processes

Verify an inference of the form:

p1, p2, . . . , pn ⊢ q,

where the inference is intermediate, one need to prove the proposition:

p1, p2, . . . , pn ⇒ q.

Decomposition is as proof search processes2. Importantly, the goal is not to find

just any proof to fill intermediate gaps but rather to identify proofs or lemmas

that bridge enthymematic gaps.

An enthymeme is an argument with implicit premises. Thus, a competent

reader could fill in an enthymematic gap by background knowledge in a

"reasonable amount of time" (Hamami, 2022, p. 424). Some "explanatory

gaps" as addressed in Section 2.1 might not be enthymematic. This is what

makes some informal proofs unrigorous on Harmami’s account.

Consequently, what counts as a decomposition is contingent upon the mathe-

matical practice, specifically the shared background knowledge of competent

and what constitutes a "reasonable amount of time"3.
2Here, I have adapted Hamami’s notation, replacing his mixed formalism with the standard

symbols ⊢ (syntactic entailment) and ⇒ (material implication) (Hendricks and Pedersen,
2011, pp. 8–9).

3Hamami loosely suggests that "a few days" is considered too long (Hamami, 2022, p. 423).
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Verification Processes

Verification by contrast, takes immediate inferences as input. If rigorous proofs

were formal ones, verification would just require checking for modus ponens:

P, P ⇒ Q ⊢ Q.

However, this approach does not reflect how mathematical practice actually

comprehends immediate inferences. Epistemic agents verify proofs without

necessarily reducing them to axioms and primitive rules of inference.

Hamami introduces two concepts to define the scope of verification: higher-
level rules of inference and rule certificates.

An epistemic state comprises the propositions an agent knows and the higher-

level rules they possess. Initially, an epistemic state is limited to a set of axioms

and primitive inference rules learned during early training (Hamami, 2022,

p. 426). Over time, the agent updates their epistemic state via conservative

extensions. These involve deriving new propositions from the known ones or

acquiring new higher-level rules. When an agent adopts a new higher-level

rule, they are said to have acquired a rule certificate.

Although this model is a highly idealized representation of an agent’s epistemic

state, it provides a conceptual framework for describing how agents judge

proofs as rigorous. In particular, the description of the DV schema does not

refer to routine translation or formal proofs. These terms will take center stage

in the following explanation of the normative part of rigor.

2.2.2 Normative Part of Rigor
In contrast to the descriptive part, the normative part of rigor is the ability to

routinely translate a proof into a formal proof. The key concept is the notion

of routine translation, which Hamami interprets algorithmically.

Proofs are categorized into four levels of granularity: (Hamami, 2022, p. 429)

Vernacular-level: Informal proofs as presented in standard mathematical

texts, contain both intermediate and immediate inferences.

Higher-level: Informal proofs that only involves immediate inferences,

relying on high-level rules known to epistemic agents.

Intermediate-level: Informal proofs that only depend on axioms and

primitive rules of inference.
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Lower-level: Formal proofs that are relying exclusively on primitive

rules of inference and axioms from a formal deductive system.

Routine translation [RT] is a transformation algorithm from one level to the

next. For example, going from the vernacular to the higher level decomposes

intermediate inferences into immediate ones (Hamami, 2022, p. 431).

The normative part of rigor is defined as the success of RT. "Routinely" can

then be given a specific interpretation that does not depend on the actual

routines of the mathematicians. The descriptive and normative parts of rigor

are here conceptually independent of each other. It is conceptually possible for

a proof to have the descriptive part without the normative, and vice versa.

2.2.3 The Conformity Thesis
The conformity thesis posits that the descriptive part implies the normative

part of rigor. In simpler terms, if a proof is judged as rigorous, then it is

rigorous (Hamami, 2022, p. 33). By contraposition: If a proof is unrigorous, it

will be judged as unrigorous.

This relationship is asymmetric. The thesis does not state the reverse: that all

rigorous proofs are judged as such. In some cases, rigorous proofs might not

be recognized by an epistemic agent. An error of judgment could occur, for

instance, if the agent does not invest the time to decompose each intermediate

inference or to verify each immediate inference in the proof.

To demonstrate that a proof is not rigorous in the normative sense, it would

not suffice to show that mathematical practice does not judge it as rigorous.

Instead, one would need to show that RT fails to work at all levels. This failure

would occur if one of the algorithmic translations was impossible.

Hamami’s model has shortcomings. For example, the descriptive part presents

a tabula rasa. In mathematical practice, knowledge is much more iterative in

its appropriation. Undergraduate students know that 0 < 1 before they prove

that the neutral element for addition is smaller than the one for multiplication.

This challenges the faith in the conformity thesis if the DV schema is an

inadequate representation of practice. Furthermore, the conformity thesis is

equivalent to stating that the probability of mathematicians making a false

positive in verification is zero. Presented in this way, it seems ludicrous.
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However, the normative part of rigor presents an operational conception that

can function as a clear demarcation criterion for rigor. In Section 4.2 I will

conclude by this that the proof by the dynamic approach is unrigorous.

I now turn away from this presentation of one conception of rigor to address

both a critique of the standard view of rigor and presenting other competing

conceptions. Hamami’s simple solution to the puzzle of informal mathematics

explains the convincing nature of informal proofs as an indirect feature of

formal proofs. The following characterizations will address why informal

proofs seem to have a convincing quality beyond the point of formal ones.

2.3 Rigor Pluralism
The tension between epistemic value monism and the plurality of proof pur-

poses is what leads Tanswell to advocate rigor pluralism (Tanswell, 2024, p. 6).

He identifies an implicit assumption of the "true essence" of rigor, critiquing

the notion that "one concept fulfills all" (Tanswell, 2024, p. 7). Instead, rigor

pluralism proposes the use of different models of rigor tailored to the evalu-

ation of various proofs (Tanswell, 2024, p. 8). To illustrate this perspective,

Tanswell presents four distinct models of rigor and proof.

Tanswell contends that each of these four models highlights different aspects

of rigor. This section presents each model and presents the underlying assump-

tions in their descriptions. In Subsection 2.3.5, I summarize with a critique of

Tanswell and address his implicit assumption of epistemic value monism.

2.3.1 The Standard View of Rigor
The standard view of rigor asserts that a rigorous proof maintains a connection

to formal proofs, e.g., through RT as presented in Section 2.2.

While Tanswell critiques various aspects of the standard view, one key issue

is correctness (Tanswell, 2024, p. 12). Proponents of the standard view could

accept the existence of correct but unrigorous proofs. However, Tanswell takes

the standard view to assume that rigorous proofs must always be correct.

This does not seem right. For example, a proof sketched on a napkin after a

conference talk or a drawing on a blackboard might be the correct choice of

communication in that setting, although they are unrigorous proofs.
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"Correct" is not defined in Tanswell (2024). This term is surprisingly ambiguous

in the context of proofs. Let me clarify why: Proofs, as objects4, cannot be

inherently correct or incorrect. Instead, correctness refers to actions: the

context-dependent suitability of presenting a particular proof.

Tanswell is right in questioning that a correct proof is one that can be RT.

However, this implication of the standard view arises only in conjunction with

epistemic value monism. Proponents of the standard view may argue that a

rigorous proof is translatable into formal ones, but they may also recognize

contexts where a rigorous proof is not desirable. The proponent of the standard

view does not need to endorse epistemic value monism. One could both hold

the standard view and epistemic value pluralism.

2.3.2 The Proof as Dialogue View
The second model Tanswell introduces conceptualizes proofs as dialogues

(Tanswell, 2024, p. 30). This model emphasizes the dialectic nature of mathe-

matics (Tanswell, 2024, p. 37), acknowledging that different contexts require

varying levels of rigor. Tanswell references empirical findings from Davies et

al., which demonstrate that mathematicians assess the rigor of proofs based

on contextual factors. He concludes:

"Likewise, as the quote [see below] suggests, the optimum level

of detail for rigour might vary substantially by context" (Tanswell,

2024, p. 41).

However, this conclusion misinterprets the study by Davies et al.:

"There are times when you give them examples in class that have

a certain level of rigor, but as time goes on and as the students

become more mature in their own abilities to reason and argue

. . . you can make statements and assumptions that they have an

obligation to sit down and figure out what the details are or know

what the implied statements are within that." (Davies et al. 2021,

p. 9, quoted in Tanswell, 2024, p. 41).

Davies et al. show that the degree of rigor varies with context — not the level of

detail required for a proof to be rigorous. This conflation stems from Tanswell

4Wether proofs are abstract or concrete objects are a point of disagreement. Although
they seem abstract, formalists like Hilbert have argued that: "A formalized proof, like
a numerical symbol, is a concrete and visible object" (Hilbert, 1926, 187, my italics).
However, this is not a disagreement about whether or not proofs are objects.

14 Chapter 2 Epistemic Value Pluralism



implicitly assuming the standard-as-rigor interpretation of Burgess’s standard.

I will come back to this in Subsection 2.3.5.

2.3.3 The Proof as Recipe View
The third model, like the second, focuses on what a proof is rather than what

rigor is. Here, Tanswell highlights the active role of proofs, conceptualizing

them as recipes or practical knowledge (Tanswell, 2024, p. 43).

Tanswell draws on Gilbert Ryle’s distinction between “knowing that” and

“knowing how” as respectively theoretical and practical knowledge. He por-

trays proofs as a set of epistemic actions. Published proofs often contain

instructions, which Tanswell interprets as intrinsic elements of a proof, rather

than rhetorical devices. According to this view, rigor entails an error-free

process that explicitly clarifies dependencies on definitions and lemmas to the

extent it is in need (Tanswell, 2024, p. 54).

But how much explicitness is needed? While Tanswell asserts that “formal logic

does not have a monopoly on rigour” (Tanswell, 2024, p. 55), this claim does

not follow from the conceptualization of proofs as recipes. Formal grounding

might always be required for rigor; what the recipe model demonstrates is that

proofs can serve as epistemic actions tailored to the needs of an epistemic agent.

Once again, Tanswell implicitly assumes that proofs serving an agent’s needs

are automatically rigorous — an assumption valid only under the standard-as-

rigor interpretation of Burgess’s standard.

2.3.4 The Rigor as Virtue View
The fourth model addresses rigor as an evaluation of the epistemic agent who

presents the proof. The ascriptions of rigor reflect not only the properties of

the proof but also the prover. This view is inspired by virtue epistemology. Just

as virtue ethics evaluates actions based on the character of the agent, the rigor

of a proof is tied to the agent’s epistemic virtues (Tanswell, 2024, p. 58):

"[T]he rigorous mathematician would be both careful not to be

overconfident and sensitive to multiple sources of evidence" (Tan-

swell, 2024, p. 62).

Rigor as openness to evidence and caution in judgment seems more aligned

with the virtue of humility than rigor. In addition, Tanswell also remarks:

2.3 Rigor Pluralism 15



"[R]igour is just one among many relevant intellectual virtues for

mathematics" (Tanswell, 2024, p. 62).

This is epistemic value pluralism in a virtue epistemic framework. This does

not go well with the characterization of rigor in the previous quote. The

epistemic virtue of humility hardly connects to rigor. This is once again the

standard-as-rigor interpretation of Burgess’s standard. Certainly, both humility

and rigor are virtues, but they are not the same virtue. And neither do they

have to be if one takes up epistemic value pluralism.

Let us now turn to an overall evaluation of Tanswell’s argument for rigor

pluralism. The argument is only implicit throughout his book, but the contour

of an argument is present (Tanswell, 2024, p. 66).

2.3.5 The Problem of Rigor Pluralism
Tanswell’s four models of rigor are categorically misaligned: the first and

fourth concern rigor directly, while the second and third address proofs, and by

this have implications for what rigor is. This inconsistency is irrelevant under

the assumption of epistemic value monism, where rigor is the sole evaluative

standard for proofs. However, epistemic value pluralism makes this categorical

mismatch problematic.

Although Tanswell’s aspiration for pluralism in mathematical practice is praise-

worthy, his multi-model approach in rigor pluralism is unconvincing. His

implicit argument assumes that no single concept of rigor captures all aspects

of mathematical practice. That is a denial of the rigor-as-standard interpre-

tation of Burgess’s standard. By this, he argues that mathematical practice is

in need of different models of rigor suited to different epistemic objectives.

That is an endorsement of the standard-as-rigor interpretation of Burgess’s

standard, where "rigor" has different meanings depending on context.

Tanswell’s semantic relativism undermines his critique of the standard view.

Why should rigor encompass all features of a proof? Tanswell suggests:

"[R]igorous proof is about one way of doing good mathematics"

(Tanswell, 2024, p. 8).

Yet elsewhere he states:

"[M]athematics ought to be done in a way to meet the standards

of rigour" (Tanswell, 2024, p. 7).

16 Chapter 2 Epistemic Value Pluralism



This equivocation suggests that Tanswell’s concept of rigor is shaped more

by implicit epistemic value monism than by genuine pluralism. This renders

his solution to the puzzle of informal mathematics by addressing different

epistemic tasks deficient in the opposite direction to Hamami. It places too

much importance on the first part of the puzzle: "How do informal proofs

generate conviction?" Tanswell’s answer is that informal proofs are rigorous1,

rigorous2, rigorous3 or rigorous4. This addresses only the second part of the

puzzle: "how are informal proofs related to formal proofs" when the informal

proof is rigorous in a standard view sense.

The version of pluralism I will consider in Chapter 4 and Chapter 5 rejects

rigor pluralism as an equivocation of rigor. Instead, it recognizes multiple

epistemic values by epistemic value pluralism and engages in context-specific

debates about their prioritization. This avoids the pitfalls of Tanswell’s shifting

definitions and will provide a simpler language for evaluating mathematical

practice. I will use the standard view of rigor in my ascription of rigor to the

two proofs of Chapter 3. Following the spirit of Tanswell, in Section 4.4, I

argue that the property of RT is not all there is to a proof.

Let us now address the pluralism Tanswell sets after through conceptual means

by empirical inquiry. This, in contrast to the previous addressing of the puzzle

of informal mathematics, will not be a conceptual exploration of rigor. I will

present how mathematicians actually use the adjective "rigor".

2.4 Appraisal of Mathematical Proofs
Different proofs serve different purposes. At times, mathematicians seek

those that are useful for exploring unfamiliar concepts. At other times, they

value proofs for their beauty, appreciating the artistry within a tradition that

spans more than 2,500 years. In yet other contexts, precision or intricacy
take precedence, ensuring that even the most intricate edge cases fit into the

foundation of mathematics.

This diversity of purposes suggests that evaluating mathematics could be a

highly complex task. Some mathematical works might excel in one dimension

at the expense of others. Terrence Tao, for instance, argues that students

develop an intuitive sense for identifying mathematics that fosters further

productive work (Inglis and Aberdein, 2015, p. 88). His framework provides a

way to judge recently developed mathematics that has not yet demonstrated
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its generative potential. However, Tao’s speculative notion of intuition may be

unnecessary if the dimensionality of mathematical qualities is lower than he

conjectures (Inglis and Aberdein, 2015, p. 88).

In contrast, Inglis and Aberdein propose a model to describe how mathemati-

cians evaluate proofs along four dimensions: aesthetics, intricacy, utility, and

precision (Inglis and Aberdein, 2015, pp. 99–100). Their empirical study

challenges the classic assumption that mathematical beauty implies simplicity

(Inglis and Aberdein, 2015). By examining correlations in how mathematicians

describe proofs, they reveal a more nuanced landscape of appraisal.

In their study, 255 mathematicians were asked to think of a proof of previous

interest to them. After their choice, they were presented with 8 adjectives

drawn from a list of 80 adjectives used to describe mathematical proofs. For

each adjective, the mathematicians were asked to carefully evaluate how well

it described their chosen proof and grade this on a five-point Likert scale (Inglis

and Aberdein, 2015, pp. 95–96).

By two different correlation tests5, they motivated the use of an exploratory

factor analysis to describe the application of adjectives. Five different factors

were extracted and together they explained 44.7% of the variance (Inglis

and Aberdein, 2015, p. 96). One of the factors was systematically used for

inaccurate descriptions of the proofs the mathematicians had chosen, such

as: "careless" and "shallow". The authors concluded that this factor was not a

true dimension and continued only with four dimensions (Inglis and Aberdein,

2015, p. 99). I only address these five factors as four dimensions as well.

In addition, the authors also calculated the Spearman rank correlation for

"beautiful" (Inglis and Aberdein, 2015, p. 100). The results showed that

proofs deemed "beautiful" were often also described as "profound" (Inglis and

Aberdein, 2015, p. 97). However, contrary to popular belief, there was no

correlation between "beautiful" and "simple" significantly different from zero

(Inglis and Aberdein, 2015, p. 100). This finding undermines the assumption

that beauty and simplicity are inherently linked in mathematical practice.

While this lack of correlation does not directly refute the metaphysical possibility
of a necessary relationship between beauty and simplicity, it casts doubt on

it. Any persistence of such a claim would require re-conceptualizing these
5Two test were conducted. One by computing the Kaiser-Meyer-Oklin value and comparing it

with a threshold value that was exceeded. This is not a hypotheses test, but an evaluation
in descriptive statistics. Further they ran Bartlett’s Test of Sphericity with high significance
(p < 0.001), which reasonably rejects the null hypotheses of no corelation.
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qualities beyond their actual use. For now, skepticism about their connection

seems justified unless contrary evidence emerges.

Further analysis revealed that "beautiful" was correlated positively with adjec-

tives such as "elegant" and negatively with "ugly", while "simple" was correlated

positively with "obvious" and negatively with "difficult". This introduced two dis-

tinct dimensions: aesthetics and intricacy (Inglis and Aberdein, 2015, pp. 99–

100). Similarly, correlations between adjectives like “practical” and “informa-

tive” on the one side, and “precise” and “rigorous” on the other, supported the

construction of utility and precision as separate dimensions.

In my exploration of rigor, observations concerning the adjective "rigorous" are

noteworthy. Unfortunately, the Spearman rank correlation was only done with

"beautiful", so I can only relate "rigorous" to the four dimensions extracted

and not directly to any other adjective. "Rigorous" associates strongly with

the precision dimension but weakly with the other three. Focusing solely

on rigor in mathematical practice could produce mathematics that excels in

one dimension while neglecting others. If mathematics is a multidimensional

practice, it must balance these competing qualities.

In Chapter 4, I will address the diverse goals of the proofs in Chapter 3. To

frame this discussion, I will distinguish between the figurative6 and epistemic
qualities. The aesthetic and intricacy dimensions pertain to the way mathe-

matics is presented, focusing on form. In contrast, the utility and precision

dimensions align more closely with epistemic pursuits. The current model

provides strong evidence that mathematical appraisal can be described in a few

dimensions, rather than a high-dimensional framework, as Tao suggested.

2.4.1 Goals of Mathematical Practice
Different agents of mathematical practice may pursue different goals. When

describing mathematics as a practice, it remains unspecified what kind of

practice mathematics is (Carter, 2024, p. 11). Viewing mathematics as an

art form emphasizes aesthetics as the goal. If mathematics is treated as an

abstract system built for its own sake, the focus might shift to the intricacy

of the system. If mathematics serves as a tool for other disciplines, such as

physics or finance, utility becomes the standard of evaluation. Lastly, when

viewed as a descriptive science, the objective is the precise description of its

own abstract objects.

6I choose to stay away from the term formalistic, to avoid confusion with formalism.
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The objectives of a mathematical proof are not inherent in the concept of

proof itself but depend on the overarching goals of mathematical practice. If

mathematics is considered an epistemic practice, its objectives are epistemic.

This does not exclude an interest in figurative qualities like beauty and intricacy,

but as epistemic agents, mathematicians prioritize epistemic goals.

Both utility and precision appear to be epistemic qualities. Epistemic agents

value information as well as unambiguity, as reflected in their associations

with utility and precision dimensions, respectively. Choosing one quality at

the expense of the other is not feasible, since the dimensions by definition are

orthogonal. So, maximizing one does not entail the maximizing of the other.

"Rigorous" is associated strongly with precision but weakly with utility. As-

sumed that the utility of proofs is an epistemic concern, then rigor cannot be

all there is to a proof. Although it may be impossible for some proofs to excel

in both utility and precision, this only underscores the need for multiple proofs

addressing different aspects of mathematical practice.

Above I commented on the metaphysical limitations on a correlation analysis

of how mathematicians appraise proofs as "beautiful" and "simple". The same

methodological consideration is applicable to this attention on how mathemati-

cians use "rigorous". Maybe mathematicians are not actually denoting rigor

when they say "rigor". In Hamami’s language, this is a denial of the conformity

thesis from Subsection 2.2.3. As presented in Chapter 1, the methodological

assumption in this thesis follows the philosophy of mathematical practice. I

am uncovering the implicit worldview of the practice: for this, actual language

is the best — if not only — source for addressing ontological questions.

The empirical findings in Inglis and Aberdein (2015) present further motivation

for epistemic value pluralism. In Sections 4.4 and Section 5.2 I revisit proof

appraisals in relation to the proofs of Chapter 3.

It is now time to present the dynamic approach in Chapter 3. The case

presents us with an epistemic activity from stochastic analysis. In Chapter 4 I

will use the theoretical considerations in Chapter 2 to argue that unrigorous

proofs are present in mathematical practice and valuable for epistemic agents.

This challenges epistemic value monism. In terms of Burgess’s standard, the

first point contradicts the standard-as-rigor interpretation, and the second

contradicts the rigor-as-standard interpretation.
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3Practice of Stochastic
Analysis

I now turn to the dynamic approach in martingale theory. By presenting two

proofs for the same theorem in stochastic analysis, this chapter bridges the

general theory established in Chapter 2 and the concrete analysis and discus-

sion conducted in Chapter 4 and Chapter 5. The theorem, which combines

predictability and the martingale property, serves as a key tool in stochastic

integral theory and has applications such as life insurance analysis.

First, in Section 3.1, I will provide the necessary background, including key

definitions and intuition, culminating in the statement of Theorem 1. In

Section 3.2, I will present a proof by the dynamic approach, followed by a

proof by the monotone class theorem in Section 3.3. Section 3.4 concludes

with a comparison of the two proofs, highlighting their distinct characteristics.

This sets the groundwork for Chapter 4, where I analyze the implications of

these different approaches based on the epistemic insights from Chapter 2.

All notation is from Andersen et al. (1993), specifically Chapter II, Sections
1 and 2 (Andersen et al., 1993). Theorem 1 corresponds to a weak version

of Theorem II.3.3 (Andersen et al., 1993). The dynamic approach draws on

heuristics from Section II.1. The second proof is based on the sketch in Section
II.3. I will refer to the results of Schilling (2005) and Hansen (2021) translated

into the formalism of Andersen et al. (1993) to ensure consistency. Although

I would have preferred to use Schilling (2005) to present the definitions of

concepts left undefined in Andersen et al. (1993), I was in need of a source

that defined stochastic processes in continuous time. Schilling (2005) does

not do this since it handles countable sequences of measurable functions. To

be able to handle a more general concept of stochastic processes, I stick to

Hansen (2021), although it is unpublished lecture notes.
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This chapter is not a critical evaluation of proofs as strings of symbols as they

are presented in practice. Rather, I engage in the construction of proofs to

highlight and address their epistemic characteristics. This is a reconstruction

of mathematical practice, not an analysis of direct observations in the form of

a literature review. Although the stylized presentation of these proofs idealizes

certain aspects of the practice, it also runs the risk of misrepresenting the

actual practice. To remain faithful to Andersen et al. (1993), I will include

quotations that illustrate the motivations behind the conceptual tools.

The purpose of this chapter is to present an example of both a rigorous and

an unrigorous proof from mathematical practice. This sets the stage for the

analysis in Chapter 4 and Chapter 5, where I analyze the proofs to elucidate

their distinct epistemic benefits and assess their implications for the broader

conceptualizations in the practice of stochastic analysis.

3.1 Formal Frame
In this section, I develop the formal framework for stochastic processes X. A

stochastic process is as a sequence X1,X2, ... of random variables X, defined

on a probability space (Ω, F , P ) (Hansen, 2021, p. 37). This concept of a

stochastic process is a random phenomenon evolving in discrete time.

I will have to construct martingales and predictable processes in continuous
time to serve the approaches discussed in Section 3.2 and Section 3.3. So I will

need a more general definition of a stochastic process than just an expansion

of the familiar concept of the random variable X (Hansen, 2021, p. 445).

A stochastic process:

X :
(
X(t) : t ∈ [0, ∞)

)
,

is a family of random variables indexed by t on the interval [0, ∞).

A real-valued random variable X maps an element ω ∈ Ω from the probability

space (Ω, F , P ) to the real numbers R. I denote its realization as X(ω).

A stochastic process X for fixed t is a random variable: X(t) : Ω → R. On the

other hand, for fixed ω, it is a map X(ω) : [0, ∞) → R. This function, known as

a sample path, is the trajectory of the process over time. If the sample paths

X(ω) :
(
X(t, ω) : t ∈ [0, ∞)

)
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are right-continuous with left limits for almost all ω, it is called càdlàg.

To study how a process evolves, I introduce the concept of its history, called a

filtration (Andersen et al., 1993, p. 60):

(
F (t) : t ∈ [0, ∞)

)
.

The filtration
(
F (t)

)
is an increasing family of sub-σ-algebras of F , represent-

ing the information at time t. For all t ∈ [0, ∞) the filtration satisfies:

1. Increasing: F (s) ⊆ F (t) ⊆ F for s < t,

2. Right continuous:
⋂

s<t F (s) = F (t).

Throughout this chapter, I am going to use the filtration F (t−), as the smallest

σ-algebra containing all F (s) for s < t.

A process X is adapted to a filtration
(
F (t)

)
if it is F (t)-measurable for all

t ∈ [0, ∞).

I now define the key processes of interest: the martingale. A process M is a

martingale if it, for all t ∈ [0, ∞), satisfies: (Andersen et al., 1993, p. 64)

1. M(t) is F (t)-measurable.

2. E
[
|M(t)|

]
< ∞.

3. E
[
M(t)

∣∣∣F (s)
]

= M(s) for all s < t.

By convention, the initial value of a martingale is set to zero M(0) = 0.

This is a global characterization of the process. In Section 3.2, I will give a

local characterization using dynamics.

A stochastic process H is predictable if it is measurable with respect to the

σ-algebra on [0, ∞) × Ω generated by all left-continuous, adapted processes

(Andersen et al., 1993, p. 66). This ensures H(t) is known at time t−.

In the following, I will restrict myself to processes Y that have càdlàg sample

paths with finite variation [FV], meaning (Andersen et al., 1993, p. 64):

∫
[0,t]

|dY (s)| < ∞ for all t ∈ [0, ∞) and almost all ω ∈ Ω.

The variation process
∫

|dY | is an expression of how much the function Y (ω) :
t → R oscillates. For Y (t, ω) = sin

(
1
t

)
graph swings between −1 and 1

faster and faster as t → 0. There is no explicit way to calculate the integral
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∫
[0,t] |dY (s)|, but the linear variation for a sample path Y (ω) : t → R on the

interval [0, T ] ⊂ [0, ∞) is given as: (Hansen, 2021, p. 478)

V0,T (Y (ω)) = sup
{

n∑
i=1

∣∣∣Y (ti, ω) − Y (ti−1, ω)
∣∣∣∣∣∣∣∣0 = t0 < t1 < . . . < tn = T

}

As seen in the figure above t 7→ sin
(

1
t

)
is an example of unbounded variation.

I only consider processes Y such that V0,T (Y (ω)) < ∞.

A stochastic integral is an integral where both the integrand and the integrator

are stochastic processes. For a given ω ∈ Ω, a new stochastic process is defined

as (Andersen et al., 1993, p. 64):

t 7→
∫

[0,t]
X(s) dY (s),

such that for given (t, ω),
∫

[0,t]
|X(s)| |dY (s)| < ∞.

In the following, I will only consider predictable and bounded processes as

integrands.

I now present a weaker version of Theorem II.3.1 from (Andersen et al., 1993,

p. 71), focusing on its conceptual aspects to better highlight the differences

between the approaches in Section 3.2 and Section 3.3.

Theorem 1. Suppose M is a FV martingale, H is a predictable process, and H is
bounded. Then

∫
[0,t] H(s) dM(s) is a FV martingale.

Intuitively, this result states that scaling a martingale M by a predictable and

bounded process H produces a new martingale, provided H is bounded. The

boundedness of H ensures that E
[∣∣∣∫[0,t] H(s) dM(s)

∣∣∣] < ∞.
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Let us now turn to the two proofs for this result. First, a proof by the dynamic

approach, followed by a proof by the monotone class theorem.

3.2 Proof by Dynamic Approach
The increments of a function f : A → B at a point x ∈ A are thought of as a

differential quotient, which captures the limit of a difference quotient: the ratio

between the change of the function and the change of its variable.

d

dx
f(x) = lim

h→0

f(x + h) − f(x)
h

The differential quotient is not well suited to handle the discontinuities of the

jumps in a stochastic process. Furthermore, it is only well defined for a fixed ω

with a sample path X(ω) : [0, ∞) → R. For an unfixed ω ∈ Ω, the differential

quotient cannot be translated directly into the language of limits. Randomness

is essential, as stochastic processes are defined on [0, ∞) × Ω.

To address this, I introduce the concept of dynamic, which is incommensurable

with the differential quotient. Dynamics are defined in terms of stochastic
differential equations to describe the behavior of stochastic processes.

For a stochastic process X, its dynamic is the increment:

dX(t) = d

(∫
[0,t)

dX(s)
)

.

This represents the change in X(t) over a small time interval [t, t + dt). Infor-

mally, for a càdlàg process it is expressed as:

dX(t) = X
(
(t + dt)−

)
− X(t−).

This is an informal notation, so the concrete interpretation is heuristic. In

Andersen et al. (1993) they present this as an "infinitesimal time interval

[t, t + dt)" (Andersen et al., 1993, p. 89), not a time interval with infinitesimal

length [t, t+dt]. In this regard, it is important to note that the interval [t, t+dt)
is arbitrarily small, since dt can be seen as an infinitesimal contribution to t.

However, Andersen et al. (1993) are not interested in the interval [t, t + dt]
itself, as the right-hand endpoint is left open due to the presence of (·−) in

the construction of dX. The authors are interested in the value of the process

immediately before an infinitesimal contribution to t.
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Using the framework of dynamics, a martingale can be characterized in a

new way. Instead of the definition in Section 3.1, informally a martingale is

characterized as a process M with dynamic dM that satisfies:

E
[
dM(t)

∣∣∣F (t−)
]

= 0.

This local characterization reflects that a martingale is a process with no

expected increment in an infinitesimally small time interval [t, t + dt). In other

words, the expectation for the value of M(t) is M(t−) given the information

F (t−), the value of the process just before time t.

Heuristically, this is equivalent to the global characterization:

E
[
M(t)

∣∣∣F (s)
]

= M(s) for all s < t.

One sees this by adding up the increments over small sub-intervals [u, u + du)
that partition [s + ds, t + dt) = (s, t] (Andersen et al., 1993, p. 52):

E
[
M(t)

∣∣∣F (s)
]

− M(s) 1= E
[
M(t) − M(s)

∣∣∣F (s)
]

2= E
[∫

(s,t]
dM(u)

∣∣∣∣F (s)
]

3=
∫

(s,t]
E
[
dM(u)

∣∣∣F (s)
]

4=
∫

(s,t]
E

[
E
[
dM(u)

∣∣∣F (u−)
]∣∣∣∣∣F (s)

]
5= 0.

Thus, obtain:

E
[
M(t)

∣∣∣F (s)
]

= M(s).

Step-by-step clarification:

1. Follows from linearity of conditional expectation.

2. Follows from the construction of stochastic integral.

3. Follows from conditional Fubini’s theorem (Schilling, 2005, p. 354) only

through informal notation.

4. Follows from the tower property (Hansen, 2021, p. 355), as u > s.

5. Follows from the dynamic characterization of a martingale.
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Even though one intuitively grasps the content of the local characterization of

a martingale, it is not a well-formed1 property. The dynamic is an increment in

an infinitely small interval [t, t + dt). The concept of conditional expectation

E
[

·
∣∣∣F (t−)

]
is not defined for such arguments (Hansen, 2021, p. 341), which

is why this is a heuristic based on the informal notation dX(t) = X
(
(t + dt) −)

− X(t−). However, Andersen et al. (1993) is transferring their intuitions of

construction of conditional expectations into the domain of dynamics. I will

return to this point in Chapter 4.

I now prove the result of Theorem 1 using the dynamic approach.

Let M be a FV martingale and let H be predictable and bounded.

Define:

Y (t) =
∫

[0,t]
H(s) dM(s).

The dynamic of Y is formally given by:

dY (t) = d

(∫
[0,t)

dY (s)
)

.

Informally, the dynamic of Y is:

dY (t) 1= Y
(
(t + dt) −

)
− Y (t−)

2=
∫

[0,t+dt)
H(s) dM(s) −

∫
[0,t)

H(s) dM(s)

3=
∫

[t,t+dt)
H(s) dM(s)

4= H(t) dM(t)

Step-by-step clarification:

1. Follows from the informal expression of dynamics.

2. Follows from the definition of Y .

3. Follows from the construction of stochastic integral.

4. Follows from the informal interpretation of dynamics.

1I use "well-formed" in the tradition of formal logic to ascribe sequence of symbols generated
from formal rules (Hendricks and Pedersen, 2011, p. 22). No interpretation is allowed.
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By taking expectation conditioned on the history up to time t−, I see that:

E
[
dY (t)

∣∣∣F (t−)
] 1= E

[
H(t)dM(t)

∣∣∣F (t−)
]

2= H(t) · E
[
dM(t)

∣∣∣F (t−)
]

3= H(t) · 0

= 0

Step-by-step clarification:

1. Is an informal application of conditional expectation on dynamics.

2. Follows from H(t) being predictable.

3. Follows from M(t) being a martingale and the informal characterization.

Furthermore, since H(t) is bounded, I have the following:

E
[
|Y (t)|

] 1= E
[∣∣∣∣∫

[0,t]
H(s)dM(s)

∣∣∣∣]
2
≤ K · E

[∣∣∣∣∫
[0,t]

dM(s)
∣∣∣∣]

3= K · E
[
|M(t)|

]
4
< ∞

(3.1)

Step-by-step clarification:

1. Follows from the definition of Y (t).
2. Follows since H is bounded, so there exist a K ∈ R+∀s < t : K ≥ H(s).
3. Follows from the construction of stochastic integral.

4. Follows from M(t) being a martingale.

Therefore, Y is a FV martingale.

This completes the proof of Theorem 1 by the dynamic approach. This rea-

soning is informal, as presented in (Andersen et al., 1993) who concludes the

chapter with: "So, it is quite justified to leave the matter in its present informal

state: We have described a valuable heuristic tool, not presented a formal

mathematical theory" (Andersen et al., 1993, p. 109).
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I will now turn my attention to the proof by the monotone class theorem.

3.3 Proof by Monotone Class Theorem
I now turn to the proof of Theorem 1 using the monotone class theorem. Let

M be a FV martingale, and let H be a predictable and bounded process.

I first consider a subset of H, defined as H̃(t) = X · 1(u,v](t), where X is a

bounded and F (u)-measurable random variable, and u, v ∈ [0, ∞) are fixed

time points with 0 ≤ u < v.

Define

Ỹ (t) =
∫

[0,t]
H̃(s) dM(s)

=
∫

[0,t]
X · 1(u,v](s) dM(s)

= X ·
(
M(t ∧ v) − M(t ∧ u)

)
.

(3.2)

To show that Ỹ is a FV martingale, I prove the equality:

E
[
Ỹ (t)

∣∣∣F (s)
]

= Ỹ (s), for 0 ≤ s < t.

Equivalently, to demonstrate that

E
[
Ỹ (t)

∣∣∣F (s)
]

− Ỹ (s) = 0.

Expanding this expression:

0 = E
[
Ỹ (t)

∣∣∣F (s)
]

− Ỹ (s)
1= E

[
Ỹ (t)

∣∣∣F (s)
]

− E
[
Ỹ (s)

∣∣∣F (s)
]

2= E
[
Ỹ (t) − Ỹ (s)

∣∣∣F (s)
]

3= E
[
X
(
M(t ∧ v) − M(t ∧ u)

)
− X

(
M(s ∧ v) − M(s ∧ u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(t ∧ v) − M(t ∧ u) − M(s ∧ v) + M(s ∧ u)

)∣∣∣∣F (s)
]
.
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Step-by-step clarification:

1. Follows from Ỹ (s) being F (s)-measurable.

2. Follows from linearity of conditional expectation.

3. Follows from equation (3.2).

I now evaluate this for the five possible cases: (s < t ≤ u < v), (s ≤ u < t ≤ v),
(u < s < t ≤ v), (u < s ≤ v < t), and (u < v < s < t).

Case 1: Let s < t ≤ u < v. So

E
[
X ·

(
M(t ∧ v) − M(t ∧ u) − M(s ∧ v) + M(s ∧ u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(t) − M(t) − M(s) + M(s)

)∣∣∣∣F (s)
]

= E
[
X · 0

∣∣∣F (s)
]

= 0.

Case 2: Let s ≤ u < t ≤ v. So

E
[
X ·

(
M(t ∧ v) − M(t ∧ u) − M(s ∧ v) + M(s ∧ u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(t) − M(u) − M(s) + M(s)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(t) − M(u)

)∣∣∣∣F (s)
]

1= E

E
[
X ·

(
M(t) − M(u)

)∣∣∣∣F (u)
]∣∣∣∣∣∣F (s)


2= E

[
X · E

[
M(t) − M(u)

∣∣∣F (u)
]∣∣∣∣F (s)

]
3= E

[
X ·

(
M(u) − M(u)

)∣∣∣∣F (s)
]

= E
[
X · 0

∣∣∣F (s)
]

= 0.

Step-by-step clarification:

1. Follows from the tower property (Hansen, 2021, p. 355) since s ≤ u.

2. Follows from X being F (u)-measurable.

3. Follows from M being a martingale.
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Case 3: Let u < s < t ≤ v. So

E
[
X ·

(
M(t ∧ v) − M(t ∧ u) − M(s ∧ v) + M(s ∧ u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(t) − M(u) − M(s) + M(u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(t) − M(s)

)∣∣∣∣F (s)
]

1= X · E
[
M(t) − M(s)

∣∣∣F (s)
]

2= X ·
(
M(s) − M(s)

)
= X · 0

= 0.

Step-by-step clarification:

1. Follows from u < s and X being F (u)-measurable.

2. Follows from M being a martingale.

Case 4: Let u < s ≤ v < t. So

E
[
X ·

(
M(t ∧ v) − M(t ∧ u) − M(s ∧ v) + M(s ∧ u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(v) − M(u) − M(s) + M(u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(v) − M(s)

)∣∣∣∣F (s)
]

1= X · E
[
M(v) − M(s)

∣∣∣F (s)
]

2= X ·
(
M(s) − M(s)

)
= X · 0

= 0.

Step-by-step clarification:

1. Follows from u < s and X being F (u)-measurable.

2. Follows from the martingale quality for any fixed point v.
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Case 5: Let u < v < s < t. So

E
[
X ·

(
M(t ∧ v) − M(t ∧ u) − M(s ∧ v) + M(s ∧ u)

)∣∣∣∣F (s)
]

= E
[
X ·

(
M(v) − M(u) − M(v) + M(u)

)∣∣∣F (s)
]

= E
[
X · 0

∣∣∣F (s)
]

= 0.

In all cases, I have shown that:

E
[
Ỹ (t)

∣∣∣F (s)
]

− Ỹ (s)

= E
[
X ·

(
M(t ∧ v) − M(t ∧ u) − M(s ∧ v) + M(s ∧ u)

)∣∣∣∣F (s)
]

= 0,

which is equivalent to:

E
[
Ỹ (t)

∣∣∣F (s)
]

= Ỹ (s).

Thus, Ỹ is a FV martingale since:

E
[
|Ỹ (t)|

] 1= E

[∣∣∣∣X ·
(
M(t ∧ v) − M(t ∧ u)

)∣∣∣∣
]

2
≤ K · E

[∣∣∣∣M(t ∧ v) − M(t ∧ u)
∣∣∣∣
]

3
≤ K · E

[
|M(t ∧ v)| + |M(t ∧ u)|

]
4= K ·

(
E
[
|M(t ∧ v)|

]
+ E

[
|M(t ∧ u)|

])
5
< ∞

(3.3)

Step-by-step clarification:

1. Follows by equation (3.2).

2. Follows from X being bounded, so there exist a K ∈ R+ : K > X.

3. Follows from the triangle inequality.

4. Follows from the linearity of expectation.

5. Follows from the second property in the definition of a martingale.
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From H̃, I now construct the class of simple predictable processes Hsimple as

Hsimple(t) =
n∑

i=0
H̃i(t) =

n∑
i=0

Xi1(ti,ti+1](t),

where Xi is bounded and F (ti)-measurable random variable, and the intervals

(ti, ti+1] are a partition of (0, t].

From the simple predictable processes Hsimple, I can construct the class of

predictable processes H. I will need the monotone class theorem to extend the

result to processes that satisfies that Y (t) =
∫ t

0 H(s)dM(s) is a FV martingale.

Theorem 2. Monotone class theorem: Let G ⊂ P([0, ∞) × Ω) be a ∩-stable
generator for B([0, ∞)) ⊗ F and H be a vector space of functions X(t, ω) :
[0, ∞) × Ω → R such that:

1. 1[0,∞)×Ω(t, ω) ∈ H and 1G(t, ω) ∈ H for all G ∈ G .

2. For every sequence X1, X2, . . . , Xn ∈ H , with X(t, ω) := supn∈N Xn(t, ω) <

∞ for all ω ∈ Ω, we have X ∈ H .

then the class of functions measurable wrt. B([0, ∞)) ⊗ F is contained in H .

This concrete formulation of the monotone class theorem is a translation of

(Schilling, 2005, p. 68) into the nomenclature of Andersen et al. (1993).

Let H be the class of processes H, where
∫ t

0 H(s)dM(s) is a FV martingale.

H =
{

H is predictable

and bounded.

∣∣∣∣∣
∫ t

0
H(s)dM(s) is a FV martingale.

}
.

By the arguments above, the processes H̃ are members of H , since
∫ t

0 H̃(s) dM(s)
is a FV martingale.

I first have to show that H is a vector space.
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If H1, H2 ∈ H , then:

E
[∫ t

0
αH1(u) + βH2(u)dM(u)

∣∣∣∣F (s)
]

1= E
[∫ t

0
αH1(u)dM(u) +

∫ t

0
βH2(u)dM(u)

∣∣∣∣F (s)
]

2= E
[
α
∫ t

0
H1(u)dM(u) + β

∫ t

0
H2(u)dM(u)

∣∣∣∣F (s)
]

3= α · E
[∫ t

0
H1(u)dM(u)

∣∣∣∣F (s)
]

+ β · E
[∫ t

0
H2(u)dM(u)

∣∣∣∣F (s)
]

4= α ·
∫ s

0
H1(u)dM(u) + β ·

∫ s

0
H2(u)dM(u).

Step-by-step clarification:

1. Follows from linearity of integrals.

2. Follows from linearity of integrals.

3. Follows from linearity of conditional expectation.

4. Follows from the martingale property that is the inclusion criterion for

being an element in H .

Then, H is a vector space, and therefore Hsimple ∈ H .

The first criterion is trivial:

• 1[0,∞)×Ω(t, ω) ∈ H since
∫ t

0 1[0,∞)×Ω(s, ω)dM(s) = M(t), so obviously a

FV martingale.

• 1G(t, ω) ∈ H for all G ∈ G , since:

∫ t

0
1G(s, ω)dM(s) =

 M(t)

0

(t, ω) ∈ G

(t, ω) /∈ G
.

M is by definition a martingale and so is the constant zero process.

Next, I show that H is closed under limits. Let H1, H2, . . . , Hn ∈ H and

H(t, ω) = supn∈N Hn(t, ω) < ∞, where H1, H2, . . . , Hn and H are bounded

and predictable.
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Then:

E

[∫ t

0
H(u)dM(u)

∣∣∣∣∣ F (s)
]

1= sup
n∈N

E

[∫ t

0
Hn(u)dM(u)

∣∣∣∣∣ F (s)
]

2= sup
n∈N

∫ s

0
Hn(u)dM(u)

3=
∫ s

0
H(u)dM(u).

Step-by-step clarification:

1. Follows from the convergence property of conditional expectations

(Schilling, 2005, pp. 348–9).

2. Follows from the martingale property that is the inclusion criterion for

being an element in H .

3. Follows from the dominated convergence theorem (Schilling, 2005,

p. 97).

By Theorem 2 since the set of processes Hsimple ∈ H , then all H ∈ H .

Thus, Y is a FV martingale by equation (3.1).

This completes the proof of Theorem 1 by the monotone class theorem.

3.4 Mathematical Comparison
The two proofs presented in the previous Section 3.2 and Section 3.3 offer

insights into the concept of a martingale. This section is a mathematical

comparison of the approaches to proving Theorem 1. This contrasts with the

epistemic analysis of Chapter 4 and the ontological analysis of Chapter 5.

Andersen et al. (1993) presents "formal" and "informal" reasoning throughout

Chapter II. However, their distinction differs from the notion of "formal" and

"informal" proofs as discussed in Section 2.1. In the later, all proofs in Andersen

et al. (1993) are informal. In Andersen et al. (1993), "formal" refers to the

standards of measure theory (Andersen et al., 1993, p. 106) and is contrasted

with heuristic reasoning (Andersen et al., 1993, p. 45). The informal notation is

used in the section, An Informal Introduction to the Basic Concepts to introduce

dynamics (Andersen et al., 1993, 45–58). Andersen et al. reference this section

when using heuristic arguments: “So this informal argument (see Section 11.1

[...])” (Andersen et al., 1993, p. 96).
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The dynamic approach employs an informal notation in describing a martingale

where the key property is that no increment is expected:

E
[
dM(t)

∣∣∣F (t−)
]

= 0.

This local characterization contrasts the global one from Section 3.1:

E
[
M(t)

∣∣∣F (s)
]

= M(s) for all s < t.

The proof by the dynamic approach demonstrates that Y exhibits the same

dynamic behavior in its infinitesimal change as M by arguing via conditional

expectations. This approach is direct and intuitive.

In contrast, the proof by the monotone class theorem is a structural argument

based on predictable σ-algebras and generating classes using supremum argu-

ments. It focuses on establishing Y as a martingale through approximation,

rather than looking at the local dynamic behavior of the process.

While I showed in Section 3.2 that the global and the local characterizations

of a martingale are equivalent, this equivalence depends on the acceptance

of E
[
dM(t)

∣∣∣F (t−)
]

as intelligible. This foundational issue will be revisited in

Chapter 5 during my discussion of semantic externalism.

In summary, the proof by the dynamic approach is intuitive and examines the

behavior of Y locally. The proof by the monotone class theorem is abstract

and emphasizes the structural aspect that hides the intuitive idea.
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4Rigor in Practice

In this chapter, I will examine the two proofs presented in Chapter 3. The

analysis will not delve into specific interpretations of what constitutes a proof,

such as the views in Section 2.1 of proofs as formal derivations and indications

of derivations, or the perspective in Section 2.3 of proofs as arguments or

recipes. Instead, the primary focus here is on ascription of rigor to each proof.

To do this using the conceptual tools of Hamami presented in Section 2.2, I

will have to interpret a proof as something that could be translated — which

aligns with Azzouni’s derivation-indicator view from Section 2.1.

According to Burgess’s standard presented in Section 2.1.1, a proof that lacks

rigor is not a genuine proof. This conclusion holds regardless of whether

one interprets Burgess’s standard as standard-as-rigor or rigor-as-standard.

However, for the purposes of this thesis, I will adopt the latter interpretation.

The former — standard-as-rigor — is insufficient for this analysis because it

determines whether a proof is rigorous solely by assessing whether it conforms

to a practice’s predefined standard. Conversely, I aim to investigate whether

these proofs are rigorous, which is necessary for determining whether they

qualify as genuine proofs on the account of epistemic value monism.

4.1 Formality of the Proofs
The two proofs are not formal proofs as defined in Section 2.1. The proof by

the dynamic approach involves the inference:

dY (t) = H(t)dM(t) ⊢ E
[
dY (t)

∣∣∣F (t−)
]

= E
[
H(t)dM(t)

∣∣∣F (t−)
]
.
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This inference is valid only if one can conceptualize the conditional expectation

of a dynamic, as I will elaborate on in Chapter 5. However, the key issue here

is that the inference is not explicitly stated as a premise:

dY (t) = H(t)dM(t) ⇒ E
[
dY (t)

∣∣∣F (t−)
]

= E
[
H(t)dM(t)

∣∣∣F (t−)
]
.

Although this step might be seen as an "explanatory gap" (Azzouni, 2009,

p. 10) to be filled in the derivation, the proof by the dynamic approach does

not conform to the formal standard of a proof presented in Section 2.1.

Similarly, the proof by the monotone class theorem also fails to meet the

formal standard. However, the disqualifying factor is not the use of previously

proven lemmas, such as the monotone class theorem, monotone convergence

for conditional expectations, or the dominated convergence theorem. In

contrast to the proof by the dynamic approach, these measure-theoretic results

are explicitly referenced as established propositions, aligning with the formal

proof’s requirement that premises belong to one of three recognized categories:

axioms, lemmas, or derivable propositions. Instead, the proof is deemed

informal for reasons such as splitting the problem into five distinct cases

without explicating the argumentative structure or introducing constructions

such as Hsimple to define the process H. These gaps prevent the proof from being

a formal one; instead, it is better described as an indication of derivation.

Azzouni has noted that an indication of a derivation does not necessarily

identify which derivation it corresponds to (Azzouni, 2004, p. 94). This raises

the question of how to know whether or not the two proofs are indications

of the same derivation. If they are, the investigation of their mathematical

properties might merely reflect differences on the figurative dimensions from

Section 2.4. However, as argued in Section 3.4, there is no clear connection

between the proof by the dynamic approach and the proof by the monotone

class theorem, since their structures are completely different.

Formalizing the proof by the monotone class theorem appears to be a relatively

mechanical task, "albeit a tedious one" (Hamami, 2022, p. 412). Conversely,

determining the derivation that the proof by the dynamic approach indicates

is more complex but does not conflict with Azzouni’s definition of a proof, as it

merely requires that the proof indicates the existence of some derivation.
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4.2 Rigor of Dynamic Approach
The primary focus of this analysis, as outlined in Section 4.1, is the introduction

of conditional expectations in the identity relation of the dynamics. This step

is not stated as a lemma, nor could it be, as it is a manipulation that cannot be

proven from the global characterization alone. Instead, the step is assumed

to be intelligible as a result of the local characterization of a martingale. In

Section 3.2, I argued that the local characterization is equivalent to the global

one. The requirements for such equivalences will be discussed in Chapter 5.

The key inference at this stage is the transition from:

dY (t) = H(t)dM(t),

to:

E
[
dY (t)

∣∣∣F (t−)
]

= E
[
H(t)dM(t)

∣∣∣F (t−)
]
.

This step does not change the truth value of the identity relation, as the

conditional expectation E
[
·
∣∣∣F (t−)

]
is applied on both sides, based on the

same information F (t−). However, what makes this step non-trivial is the

application of conditional expectation to arguments that are not random

variables. This involves a domain expansion, as conditional expectation is

defined only for random variables (Hansen, 2021, p. 341).

Such domain expansions are not unusual in mathematical practice. Some

philosophers of mathematics argue that domain expansions are underpinned

by conceptual metaphors, a concept from cognitive linguistics (Núñez, 2009,

p. 73). Conceptual metaphors are not merely linguistic, but involve imaginative

idealizations with an inferential structure, allowing insights from a familiar

source domain to be applied to an unfamiliar target domain.

Here, the source domain comprises intuitions developed from the conditional

expectations of random variables, while the target domain involves conditional

expectations of dynamics. The familiarity with conditional expectations makes

mathematicians conceptualize and extend it into the dynamic setting.

The inference:

dY (t) = H(t)dM(t) ⊢ E
[
dY (t)

∣∣∣F (t−)
]

= E
[
H(t)dM(t)

∣∣∣F (t−)
]
,
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is neither an immediate nor an intermediate inference. It cannot be broken

into a series of simple steps. Instead, it relies on a conceptual metaphor from

the source to the target domain.

As a result, the proof by the dynamic approach is unrigorous, both in the

descriptive and normative part of rigor. In Section 2.2 I presented Harmami’s

criteria for the normative part of rigor: RT from an informal proof into a formal

one. The domain expansion prevents RT. According to Harmami’s conformity

thesis, the proof is then also unrigorous in its descriptive part. However, our

analysis reaches this conclusion independently of the conformity thesis.

The nontrivial step in the domain expansion of conditional expectations is not

an enthymematic gap. A competent reader can neither decompose nor verify

the inference, since it is a conceptual metaphor. The proof depends on the

local characterization of the martingale, formulated in terms of conditional

expectations of dynamics. The DV schema is then not feasible and the proof is

judged unrigorous by an epistemic agent of mathematical practice.

I will now turn to the second proof of Theorem 1 by the monotone class

theorem. In contrast to the proof by the dynamic approach, the second proof

is rigorous. This distinction between the two proofs motivates the discussion

in Section 4.4 of other noteworthy qualities of the dynamic approach.

4.3 Rigor of Monotone Class Theorem
Compared to the previously examined proof by the dynamic approach, the

explanatory gaps in the proof by the monotone class theorem are all en-

thymematic gaps. The proof relies on lemmas to achieve two objectives:

1. Constructing the vector space H , which contains all predictable process

H such that Y (t) =
∫ t

0 H(s)dM(s) is a finite variation martingale.

2. Construct H through by Hsimple.

The use of the monotone class theorem, monotone convergence for conditional

expectation, and dominated convergence theorem exemplifies higher-level

rules of inference. These are rules for which an epistemic agent of mathemati-

cal practice is presumed to possess implicit rule certification. This verification

aligns with Harmami’s DV schema, which characterizes the descriptive rigor.
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The proof structure includes the decomposition of Hsimple and H , which are

defined as follows:

Hsimple(t) =
n∑

i=1
Xi1(ti,ti+1](t),

H =
{

H is predictable

and bounded.

∣∣∣∣∣
∫ t

0
H(s)dM(s) is a FV martingale.

}
.

The ability to decompose the intermediate inferences down to verifiable im-

mediate ones is what gives a proof the descriptive part of rigor. For example,

proving that pm : "Ỹ is a martingale" can be reduced to showing that pmp

: "The conditional expectation E
[
Ỹ (t)

∣∣∣F (s)
]

= Ỹ (s)" in five distinct cases:

p1, p2, p3, p4, and p5. The structure of this argument is as follows:

pmp ⇒ pm,

pmp ⇔
5∧

i=1
pi,

p1, p2, p3, p3, p5,

5∧
i=1

pi,

pmp,

pm.

Similarly, the construction of H can be decomposed into linear combinations

and limits of Hsimple:

H1, H2, . . . , Hn ∈ H ,

∀α, β ∈ R : αH1 + βH2 ∈ H ,

H ∈ H where H(t, ω) = sup
n∈N

Hn(t, ω).

These are examples of the decomposition process described by Harmami’s DV

schema. Together with the verification processes, this defines the descriptive

part of rigor. Although a full exposition would be tedious and beyond the

scope of this thesis, it suffices to observe that the proof by the monotone class

theorem is one that an epistemic agent in mathematical practice would judge

as rigorous; in other words, it has the descriptive part of rigor.
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Under the conformity thesis, the descriptive part implies the normative part of

rigor. Furthermore, through RT the vernacular proof can be converted into a

lower-level proof adhering to elementary logical rules. Hence, in Harmami’s

framework, the proof using the monotone class theorem can be attributed the

normative part of rigor without the assumption of the conformity thesis.

If the proof by the monotone class theorem is rigorous, why do epistemic agents

of mathematical practice also consider the proof by the dynamic approach?

According to Burgess’s standard, rigor is the standard for good mathematics,

and this is not a case where the proof by the dynamics approach proves a

theorem that rigorous proofs cannot prove. If this were the case, the lack

of a rigorous proof could be seen as a shortcoming that creates a need for

an unrigorous alternative. However, this is not the situation. Why then do

epistemic agents of mathematical practice still use unrigorous proofs? This

question will be explored further in the following Section 4.4.

4.4 Plurality of Qualities in Practice
Since the proof by the dynamic approach lacks rigor, it should be excluded

from practice on Burgess’s standard. Nevertheless, one could adopt epistemic

value pluralism instead of monism, if it explains the diversity observed in math-

ematical practice better. As a methodological assumption in the philosophy

of mathematical practice, I assume that the practice is justified in its conduct

— as stated in Chapter 1, our task is to understand how. So, an exclusion of

proofs by the dynamic approach is not an option. There must be a reason for

applying it to prove Theorem 1. Using the terminology of Section 2.3.1, this

proof is correct even though it is unrigorous.

When is such a proof correct? The answer lies in the introductory context

provided in Andersen et al. (1993). At this stage, the authors are not focused

on grounding results in measure theory but rather on helping the reader build

familiarity with the involved concepts. The structural nature of the proof by

the monotone class theorem would not fulfill this purpose. Intuition is not

fostered by the construction of expanding inclusions. Choosing the rigorous

proof by the monotone class theorem would be the wrong action for this

epistemic task.
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While the proof by the monotone class theorem holds value due to its rigor, it

is not suitable for all epistemic objectives. This observation is only accessible

if one rejects epistemic value monism. If rigor were the sole standard of

good mathematics, it would be impossible to explain why an unrigorous proof

might better serve specific epistemic objectives. However, through the lens of

epistemic value pluralism, this distinction becomes apparent.

In Section 2.4, I introduced four dimensions for evaluating proofs: aesthetics,

intricacy, utility, and precision. The first two were classified as figurative

dimensions, while the latter two were classified as epistemic ones. Rigor is

strongly associated with precision. Consequently, the unrigorous proof by the

dynamic approach is unlikely to be described as "precise". Instead, it is more

likely to be evaluated by qualities associated with other dimensions.

If the proof by the dynamic approach is unrigorous but plays an epistemic role

in mathematical practice, it must excel in the complementing epistemic dimen-

sion of utility. This dimension is associated with adjectives such as "practical"

and "informative", which align with building intuition. This illustrates that

different proofs can serve different epistemic objectives.

The focus on qualities’ association with other dimensions than precision may

seem indirect. A more direct approach would analyze the positive and negative

correlations between rigor and other qualities. While this cannot be inferred

directly from the data in Inglis and Aberdein (2015), it would offer insight

into how epistemic agents evaluate rigorous and unrigorous proofs.

Inglis and Aberdein (2015) provide a reduction of the epistemic aspects of

proofs to a surface spanned by two dimensions. Although this methodological

reduction overlooks some epistemic nuances, it remains an operational tool

for analysis. Since “rigor” — and not "precision" — is the addressed standard,

I allow "rigor" to serve as a proxy for the epistemic dimension of precision.

Unrigorous proofs contribute to mathematical practice by excelling in the

dimension of utility: they are informative in establishing familiarity with the

mathematical objects involved.

Here, I am only hypothesizing how epistemic agents in mathematical practice

might evaluate the proof by the dynamic approach. To draw definitive conclu-

sions, an empirical study like the one of Inglis and Aberdein (2015) would

need to be conducted. However, such an empirical task is outside the scope of

this thesis, and the application of the four-dimensional framework provides

valuable conceptual insights in this case study.
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As argued in Section 2.3.5, Tanswell’s multi-modal rigor pluralism is still

a version of epistemic value monism. It does not address the contrasting

strengths of the two proofs presented in Chapter 3. Interpreting Burgess’s

standard as standard-as-rigor would classify both proofs as rigorous but under

different interpretations of “rigor”.

Tanswell might argue that his semantic relativism accounts for the different

epistemic functions of the two proofs. The proof by the monotone class theo-

rem is preferred for grounding results in measure theory because it is rigorous1.

The proof by the dynamic approach is preferred for building intuition because

it is rigorous2. Although this is a coherent position, it is an unnecessarily

obscure one. Why not simply use different predicates such as “rigorous” and

“heuristic”, while endorsing epistemic value pluralism? The collapse of such

distinct concepts into a single term seems only motivated by Tanswell’s implicit

endorsement of epistemic value monism.

In this chapter, I have analyzed both proofs in Chapter 3. In contrast to how

the predicate "formal" is used in Andersen et al. (1993), neither proof aligns

with the criteria for a formal proof in Section 2.1. Using the standard view

of rigor from Section 2.2, I argued that the proof by the monotone class

theorem is rigorous, but the proof by the dynamic approach is not. These

demarcations were made independently of the conformity thesis by directly

addressing the normative and descriptive part of rigor in both cases. Turning to

the insights from Section 2.3, I argued that, instead of following the epistemic

value monism represented in Burgess’s standard, one should acknowledge the

informative nature of unrigorous mathematics. Its heuristic is more suited for

intuition-building than rigorous proof by the monotone class theorem. Both

are important epistemic tasks, each related to different dimensions of utility

and precision. Furthermore, I argued that this difference between proofs is

concealed in the relativistic language of rigor pluralism that I discussed in

Section 2.3.

I will now take an overview of the case into broader discussions in the philoso-

phy of mathematics. With the insights from this chapter, I have the necessary

luggage to discuss the ontological implications of using conditional expec-

tations of dynamics. This epistemic step in mathematical reasoning is an

example of a broad class of inferences in mathematical practice.
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5Martingale Externalization

The application of unrigorous proofs is not unique to stochastic analysis

(McCullough-Benner, 2022, p. 113). In discussing Oliver Heaviside’s opera-

tional calculus as a method for translating symbolic abstractions into solutions

for physical problems, Colin McCullogh-Benner introduces the concept of

the robustly inferential conception [RIC](McCullough-Benner, 2022, p. 117).

This concept explains how mathematics can represent diverse target systems

(McCullough-Benner, 2022, p. 114).

RIC extends the permissible class of inferences from its original framework to

a broader domain. This extension relies on an epistemic agent’s ability to infer

connections between the original mathematical structure and a new target

system (McCullough-Benner, 2022, p. 122). RIC thus provides a justification

for engaging in unrigorous mathematics when it leads to productive outcomes.

It exemplifies the flexibility of epistemic value pluralism: it highlights that dif-

ferent inferential strategies can satisfy distinct epistemic objectives. However,

such extensions are not straightforward; they require that the epistemic agent

possesses sufficient conceptual understanding to infer connections from the

source domain to the target domain (McCullough-Benner, 2022, p. 122).

McCullogh-Benner argues that reducing Heaviside’s operational calculus to a

rigorous proof would miss key aspects of its justification (McCullough-Benner,

2022, p. 123). Heaviside leveraged physical interpretations to guide mathe-

matical tools, enabling domain expansions. RIC illustrates how informational

content derived from other interpretations can justify new mathematical infer-

ences (McCullough-Benner, 2022, p. 123). Similarly, in stochastic analysis, the

heuristic application of the conditional expectation for dynamics mirrors this

justification process by introducing new informational content that enriches

our intuition of martingales as discussed in Section 4.4.
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5.1 Semantic Externalism
The concept of RIC aligns with the broader philosophical framework of se-

mantic externalism (McCullough-Benner, 2022, p. 122). Semantic externalism
asserts that meanings extend beyond the internal content of a definition. Hilary

Putnam’s dictum captures this perspective:

"Cut the pie any way you like, ‘meanings’ just ain’t in the head"

(Putnam, 1973, p. 703).

This view opposes psychologism — the idea that meanings are purely mental

entities — and instead emphasizes that meanings are also shaped by the

concepts’ extensions (Putnam, 1973, p. 700).

The intension of a concept refers to its definitional content, while its extension
refers to the actual set of objects it denotes in the world. Frege’s famous

example of "the morning star" illustrates this distinction:

Intension: The last bright object visible in the sky at dawn.

Extension: The concrete planet Venus.

Similarly, the ostensive action of pointing to water and stating "This is water"

grounds the meaning of the concept in its extension, rather than being confined

to its intension (Putnam, 1973, p. 699). Reducing a concept’s meaning to a

purely intensional definition, as in psychologism, therefore, misses a significant

aspect of meaning.

Martingales embody this as well. Its meaning is not limited to its definition but

extends to their applications and the conceptual work they enable. Consider

the definition of a martingale in Section 3.1: For all t ∈ [0, ∞):

1. M(t) is F (t)-measurable.

2. E (|M(t)|) < ∞.

3. E
[
M(t)

∣∣∣F (s)
]

= M(s) for all s < t.

Semantic externalism suggests that this definition presents only one intension

of the meaning of the concept "martingale". The definition plays an active role

in defining. Like an ostensive definition: "This is a martingale", the definition

joins the intension of the concept meaning with its extension.

Addressing the externalization of mathematical objects brings the metaphysical

position of Platonism to mind. I will not go into this here. Although semantic
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externalism seems to imply ontological realism, it does not need to be the case.

A successful argument for ontological antirealism in this context would have

to address the Quine-Putnam indispensability argument in relation to broader

discussions of scientific antirealism. This endeavor is highly relevant and closely

related, but not within the scope of this thesis.

Semantic externalism is obviously in direct conflict with formalism as pre-

sented in Section 2.1. If mathematics is merely an abstract manipulation of

arbitrary signs, then there is nothing more to a concept than the intension of a

definition. Formalism faces, on the other hand, the philosophical challenge

of the external success of mathematics — how come mathematics represents

anything (McCullough-Benner, 2022, p. 114)? Semantic externalism explains

how mathematics can engage and represent external systems by externalizing

the object from its definition.

5.2 Conditional Expectation of Dynamics
The global characterization of a martingale in its definition introduces a well-

formed concept constructed by conditional expectations. Through deductive

reasoning, one can derive additional insights, such as for u ≤ s < t:

E
[
M(t) − M(s)

∣∣∣F (u)
]

= 0.

Since

E
[
M(t) − M(s)

∣∣∣F (u)
] 1= E

[
M(t)

∣∣∣F (u)
]

− E
[
M(s)

∣∣∣F (u)
]

2= M(u) − M(u)

= 0.

Step-by-step clarification:

1. Follows from the linearity of conditional expectation.

2. Follows from the third property of martingales.

This result may be psychologically illuminating by presenting another property

of the martingale. At two different points in time s, t we do not expect a
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difference in value. However, this is not a new characterization beyond that

given in the definition. Following Hamami’s definition of rigorous proof as

proofs routinely translatable into formal ones, the proof of Theorem 1 by the

monotone class theorem similarly constitutes an application of definitions.

This does not mean that the inference is analytical in the Kantian sense1, as it

involves manipulation of objects within the cognitive faculty of intuition, as

discussed in Section 2.1. However, this process does not involve conceptual

transformation of the object itself. No RIC through domain expansion.

In contrast, the proof by the dynamic approach is fundamentally different,

as discussed in Chapter 4. It requires the application of the conditional

expectation to extend beyond its original domain into the target system of

dynamics. Whether this constitutes an instance of RIC is not a question

for philosophical analysis but a practical concern for epistemic agents of

mathematical practice. The fact that this approach is utilized within stochastic

analysis indicates its status as RIC. My primary interest in this chapter, however,

lies in the implications of this practice.

As noted in Section 2.2, assuming the local characterization of a martingale:

E
[
dM(t)

∣∣∣F (t−)
]

= 0,

holds for M ensures the global characterization of a martingale holds as

well:

E
[
M(t)

∣∣∣F (s)
]

= M(s), for all s < t.

However, the converse does not hold — achieving this would require a domain

expansion of the conditional expectation, which cannot be implied by the

definition of a martingale alone.

How, then, can both the local and global characterizations of a martingale be

used to derive properties of the same stochastic object? I will now present an

answer by externalization.

The global characterization, as formulated in the definition, introduces the

martingale as a mathematical object for epistemic agents to develop intuitions

about. This process involves more than the intension of the definition; the

object’s extension also plays a role.

1See Section 2.1.
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Only after this abstract object is externalized beyond its definition can it be

characterized differently. If the conditional expectation is limited to stochastic

variables and a dynamic is given as an increment:

dX(t) = d

(∫
[0,t)

dX(s)
)

,

the dynamic approach remains inaccessible. It is only by externalizing martin-

gales beyond the global characterization that one can heuristically express it

by dynamic as:

E
[
dM(t)

∣∣∣F (t−)
]

= E
[
M
(
(t + dt)−

)
− M(t−)

∣∣∣∣F (t−)
]

= 0.

The local characterization of the martingale offers valuable insights into this

externalized object. This externalization makes questions about the conditional

expectation’s value tangible. While this process involves domain expansion

through a conceptual metaphor, as discussed in Section 4.2, it does not trans-

late an informal proof into a formal one. Instead, externalization enables the

local and global conceptualizations of a mathematical object to have the same

extension.

5.3 Externalization and Pluralism
The externalization of a martingale beyond its definition allows epistemic

agents to develop intuitions about its behavior. The global characterization

introduces the martingale as a well formed object, while the local characteriza-

tion offers insights into its behavior via conditional expectations of dynamics.

This motivates epistemic value pluralism: mathematical objects can be under-

stood through different conceptions, each serving distinct epistemic goals.

In William P. Thurston (1994), he presents seven distinct ways of characterizing

the derivative, e.g. geometric (the slope of the tangent to the graph of a

function) and logical (via arbitrarily small ε and δ). Thurston notes:

"This is a list of different ways of thinking about or conceiving of

the derivative, rather than a list of different logical definitions"
(Thurston, 1994, p. 3).
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This triangulation of an object produces intuition through different characteri-

zations. Drawing a graph to confirm the derivative’s behavior constitutes an

RIC if it takes place within the epistemic context of mathematical practice.

Similarly, the global and local characterizations of a martingale serve different

purposes. The dynamic approach uses the local characterization to foster

intuition, enabling epistemic agents to visualize the object beyond the intension

of the global characterization in its definition. This externalization is not

merely a restatement of its properties but a genuine heuristic contribution to

mathematical practice.

As established in Chapter 3, the dynamic approach is demonstrably used in

practice, confirming its status as a RIC. Its use underscores its epistemic value,

even if it does not conform to rigor. This interplay between precision and

utility highlights the necessity of epistemic value pluralism to understand the

contributions of unrigorous proofs.

The dynamic approach plays a crucial role in developing mathematical intu-

ition. By externalizing the martingale beyond its definition, epistemic agents

can explore new insights and conceptions of the object.

Martingale externalization illustrates how heuristic approaches complement

rigorous ones. By acknowledging the plurality of epistemic values in mathe-

matical practice, one achieves a more nuanced understanding of the role that

unrigorous proofs play in advancing mathematical knowledge. Externaliza-

tion fosters the development of intuition, enabling mathematicians to engage

productively with mathematical objects beyond their definitions.
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6Conclusion

I have argued that stochastic analysis exemplifies the presence of different

epistemic values in mathematical practice. The dynamic approach highlights

the application of unrigorous proofs and demonstrates the value of such

practices.

By engaging with contemporary theories of mathematical rigor, particularly

those of Hamami (2022) and Tanswell (2024), I contended that the standard

view of rigor is preferable to a multi-modal perspective. The latter emphasizes

the diverse epistemic functions of proofs in mathematical practice, a motivation

I share. However, I argued that epistemic value pluralism achieves this goal

more effectively than rigor pluralism. Crucially, epistemic value pluralism

avoids the pitfall of semantic relativism, which risks conflating the distinct

qualities of proofs with different meanings of "rigor".

Within the framework of epistemic value pluralism, the empirical findings of

Inglis and Aberdein (2015) were introduced that demonstrate independence

in the appraisal of proofs along two epistemic dimensions: precision and utility.

These dimensions align with the epistemic functions of rigor and intuition-

building, respectively, providing a robust basis for analyzing the case of two

proofs of the same theorem from stochastic analysis.

I examined two proofs: one by the dynamic approach and the other by the

monotone class theorem. Although the proof by the monotone class theorem

meets the standard view of rigor, I classified the proof by the dynamic ap-

proach as unrigorous. Despite its unrigorous nature, I argued for its epistemic

value. Its heuristic qualities make it uniquely suited for intuition-building, an

epistemic task that the rigorous proof by the monotone class theorem does not
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fulfill. The precision of rigorous proofs, while indispensable, can sometimes

impede the process of developing intuition.

In addition, I explored the ontological implications of semantic externalism.

The need to externalize mathematical objects from their definitions arises

from the coexistence of complementary characterizations. Without such exter-

nalization, alternative characterizations could only reiterate the intensional

content of the definition, rather than providing a deeper engagement with the

concept.

Although a discussion of Platonism and its relation to semantic externalism

lies beyond the scope of this thesis, I briefly noted that externalism does not

necessarily entail ontological realism. Addressing ontological antirealism in

this context would require engaging with the Quine-Putnam indispensability

argument and broader debates in scientific antirealism, a task reserved for

future work.

In conclusion, epistemic value pluralism is both present and desirable in

mathematical practice, as it underscores the dual importance of precision

and utility in mathematics. I have presented this pluralism in the practice

of stochastic analysis, where unrigorous proofs prioritize utility by fostering

intuition, albeit at the expense of precision. While explanatory gaps in some

unrigorous proofs must be filled to ensure reliability, mathematicians must not

shy away from exploratory heuristic thinking. By embracing epistemic value

pluralism, mathematical practice can preserve and enhance both the rigor and

intuition that drive mathematics.
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