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Abstract

In this thesis we explore how the implementation of authentic mathematical sources in a teaching

sequence can be used to teach students in upper secondary school about rigour and reasoning within

the subject of area determination. We are utilising works from two past mathematicians, Archimedes

and Newton. In order to create an inquiry-reflective learning environment within the framework of

The Anthropological Theory of Didactics, Epistemic configurations and the Multiple Perspective Ap-

proach, we propose a research methodology. Our proposal is based on Didactical Engineering within

the frame of The Anthropological Theory of Didactics and further developed taking inspiration from

a methodology by Kjeldsen and Willumsen of how original sources can be implemented in a teaching

sequence.

We design an implement a teaching sequence which aims at encouraging students to an inquiry of

rigour and reasoning within the chosen historical episodes in order to reflect upon rigour an reason-

ing in their contemporary context. Our study demonstrates that engaging with historical texts enables

some students to identify the evolution of mathematical rigour and reasoning, but discrepancies in

the students’ expected and actual knowledge made it difficult to implement the intended teaching

sequence. Furthermore is sheds light on the students misconceptions of rigour and reasoning. The

findings suggest that mathematical historical sources are valuable tools in identifying misconceptions

and encouraging students in discussion within mathematics, which is not usual.
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Introduction

We are interested in how we can use authentic historical sources in a teaching sequence in upper sec-

ondary school. Therefore we will investigate the possibilities and limitations of using such sources

to teach students about rigour and reasoning regarding area determination. Since the 2000’s the use

of authentic historical sources has been a theme in the research field of mathematics education and

nowadays a very well-established theme. As Evelyn Barbin already noticed in 1994: “Studying the

history of mathematics allows one to study the construction of mathematical knowledge and to study

mathematical activity – (...) to see mathematics (..) as an activity, a human activity”. We see a great

potential to bring forth how mathematical rigour and reasoning has changed through time and how

mathematics is not a timeless field through the students’ encounter with selected historical episodes.

Through an observation of these historic episodes, we further see a potential to strengthen the stu-

dents’ own mathematical argumentation and reasoning, hence an opportunity for the students to

orient themselves in their present. In this way we aim at creating a lesson design that offers oppor-

tunities for students to gain insight into authentic mathematical practice, with an environment in

which the students can work in ways which are analogous to, or at least similar to, how mathemati-

cians work.

With this interest we want to create an inquiry-reflective learning environment where students gain

insight into and reflect explicitly on inquiries that mathematicians engage in when they conduct re-

search from the perspectives of past mathematicians’ situated in their workplaces.

The thesis is structured into four parts. The first part establishes the theoretical framework, dis-

cussing the conformity of the chosen theories and their application in didactics and historiography.

The second part concerns a content analysis, where we define the concepts of rigour and reasoning as

used in this thesis and we examine the historical and contemporary approaches to area determination

in the light of rigour and reasoning. The third part presents our teaching design and the considera-

tions involved in its development, including lesson plans and the created compendium. Finally, the

fourth part analyses the implementation and outcomes of the teaching sequence, providing insights

into in the limitations and possibilities of our teaching design.



Part I

Theoretical Framework
Connecting Theory of Didactics with Historiography

2



Chapter 1

Introduction to Part I

We are designing a teaching sequence in mathematics in which we use authentic mathematical pa-

pers, specifically a paper by Archimedes and by Newton. Therefore, we will incorporate literature

and theories from the field of didactics and the field of historiography within mathematics. This com-

bination will give us a foundation from which we can design, test, and analyse our teaching design.

In this part of the thesis, we will put forth a theoretical framework consisting of The Anthropologi-

cal Theory of Didactics founded by Chevellard, the Multiple Perspective approach, and the ways of using

history founded by Eric Bernard Jensen and adapted by Tinne Hoff Kjeldsen into the field of mathe-

matics, and the theory of Epistemic Configurations by Moritz Epple, which is Epple’s adaption of the

theory of experimental systems within the field of chemistry by Hans-Jörg Rheinberger. Based on this

theoretical framework we will put forth our research questions of this thesis.

Afterward, we will account for two different, already established research methodologies, as there

is no research methodology within the frame of both the Anthropological Theory of Didactics and

literature within historiography of mathematics. Based on Didactical Engineering within the frame-

work of the Anthropological Theory of Didactics and inspiration from the Methodological Triangle

for how one can incorporate authentic mathematical sources in the classroom, we will propose a re-

search methodology that accounts for both fields. We will base our thesis on our proposed research

methodology.

1.1 The Conformity of the Theories

The literature that forms the theoretical framework of this thesis shares a view on how mathematical

knowledge is constructed.

First, we note that the Anthropological Theory of Didactics is based on the assumption that:

Doing, teaching, learning, diffusing, creating, and transposing mathematics, as well as

3
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any other kind of knowledge, are considered human activities taking place in institutional

settings. (Bosch and Gascón, 2014, p. 68)

Hence, the construction of mathematical knowledge is regarded as a human activity conditioned by

the institutional setting in which it arises. Second, a similar perspective on this matter can be found

in the Multiple Perspective approach if we look at what mathematics is regarded as, namely:

(...) a cultural and historical product of knowledge that is produced by human intellectual

activities. The knowledge that is produced by a mathematician, or group of mathemati-

cians, at a certain time in history depends on the knowledge and mathematical culture

available for these mathematicians and it (might) shape or define guidelines for further

developments of mathematical knowledge. (Kjeldsen, 2011, p. 3)

Knowledge is a product of human activities, in this case dependent on available knowledge and

culture. If we consider available knowledge and culture as an institutional setting, there is a shared

view between the Anthropological Theory of Didactics and the Multiple perspective approach. Third

and last, the view that construction of knowledge is considered as human activities can also be found

in the theory, of Epistemic Configurations, as we regard social practices as human activities:

(...) the activities involved in establishing scientific knowledge (...) are of course practices,

or rather a whole set of related but different practices. (...) any meaningful social practice,

and hence scientific practice, is a fortiori a cultural practice. (Epple, 2010, p. 217)

Here, the construction of scientific knowledge - such as mathematical knowledge - is considered a

cultural practice, in line with how the Multiple Perspective Approach sees the construction of math-

ematical knowledge as dependent on the available mathematical culture.

We see a conformity in the perception of how knowledge is constructed across the literature which

forms the theoretical framework of this thesis, namely that knowledge is regarded as human activi-

ties dependent on the institutional setting, the available body of knowledge and the current cultural

practices. The shared perception of knowledge described above corresponds to an action-oriented

approach to knowledge. Thus, we find no immediate discrepancies in our theoretical framework.



Chapter 2

Historiography in Mathematics

In this chapter, we give an account of the literature that constitutes the historiographical part of our

theoretical framework, namely the Multiple Perspective approach and the ways of using history and Epis-

temic configurations.

2.1 A Multiple Perspective Approach and the Ways of Using His-

tory of Mathematics

The Danish historian Bernard Eric Jensen acknowledges that developments throughout history are

conditioned by the time in which one lives, and that contemporary time is also conditioned by the

past and the expectations of the future. These considerations led Jensen to coin the Multiple perspec-

tive approach, a theory that takes such external factors into account. The underlying premise in his

theory can be stated as: "(...) people are understood as being shaped by history and being shapers

of history."(Kjeldsen, 2011, p. 3). The notion multiple perspectives refers to the fact that: "History is

studied from perspective(s) of the historical actors, paying attention to these actors’ intentions and

motivations, as well as to intended and unintended consequences of their actions." (Kjeldsen, 2011,

p. 3), which again underlines that the theory is an action-oriented conception of history. As such, the

production of mathematics should not be separated from the the time and conditions in which it was

and is developed because external factors play a significant role.

Kjeldsen who adapted Jensen’s theory to the field of mathematics, argues that the history of mathe-

matics in this action-oriented setting can be pursued if we study the history of mathematics from the

perspectives of past mathematicians, i.e. in regard to the historical context in which the mathemati-

cians lived, the available knowledge, the circumstances surrounding the new knowledge, and so on.

This we could call the mathematician’s workplace.

Furthermore, the multiple perspective approach is twofold. On the one hand, it can be used to in-

5
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vestigate the historical actors perspective. On the other hand, the historians own perspective can

and should also be considered, because the historians research is founded in his/her own questions,

problems and so on.

2.1.1 A User of History of Mathematics

It is evident that one study the past with some use of it in mind. Whether that being to orient oneself

in the present or merely to orient oneself ind the past. As Jensen puts it history is: "When a person

or a group of people is interested in something from the past and uses their knowledge about it for

some reason."(Jensen, 2010, p. 39). Hence use is a central component of Jensen’s theory as this is what

makes up history. In this thesis we adopt Jensen’s view of history. With this in mind Jensen defines

four concept pairs of the way one uses history. It should be stressed that these pairs are not mutually

exclusive. They can be present in various degrees and are overlapping, so we can think of them as

a spectrum. Furthermore the pairs are not developed to single out a correct use of history, only to

describe it.

The first concept pair is Lay history and professional history which is a distinction of the context in

which history is used. Lay history refers to an ’everyday’ usage, i.e. the non-professional historians.

A concern which can arise with this use is the motivation to modernise old mathematical results in

order to bring forth a perceived connection with the past or a motivation to simplify a text for a mod-

ern reader. Such a modernisation can lead to a distorted view of the developments. (Kjeldsen, 2011,

p. 4). The professional usage refers to the academic historians work, people who are trained in the

field.

The second pair is Pragmatic history and scholarly history. The underlying question with these are

roughly speaking: what are history a tool for? Is it a tool with which we can understand and orient

us in our present or is it something that merely can be used to understand the past on its own terms.

Hence the pragmatic history has a utility perspective - a usage with which we can better ourselves.

In contrast with this the scholarly approach this is based on a understanding and an investigation of

the past on its own terms. Furthermore this concept pair and the aforementioned pair often overlap

in such a way that a person whom uses lay history will often conform to a pragmatic use and vice

versa(Kjeldsen, 2011, p. 4).

The third pair is Action history and observer history(Kjeldsen, 2011, p. 5). Action history is characterised

by a persons use of past episodes to act in the present, by this one uses history to orient oneself in the

present. In opposition to this the observer history is characterised by a wish to understand the past

on its own terms. With this pair we can identify and depict the way a person looks at the past - either

retrospectively or forward looking.
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Lastly, the fourth pair is Identity concrete and neutral history which are used to examine the way

one presents history. Either with an intend to form the recipients perceptions of themselves or

not(Kjeldsen, 2011, 5).

Kjeldsen states: "These notions provide a set of glasses—a lens—through which we can identify, artic-

ulate and distinguish between different understandings and uses of history. Together with the multi-

ple perspective approach to history of mathematics outlined above, they provide a theoretical frame-

work that can be used to characterise, analyse and criticise uses and practices of history and imple-

mentations of history in mathematics classrooms. They can also be used to orient designs and future

implementations of history to clarify and target learning goals and teaching intentions."(Kjeldsen,

2011, pp. 5-6)

These concept pairs can allow us to orient our design in such a way that we can ’place’ the stu-

dents in learning environments with different kinds of usages of history that depends on the learning

outcome we aim for.

2.2 Epistemic Configurations

The German historian of mathematics Moritz Epple identifies problems with considering mathemat-

ics as timeless. According to Epple, mathematical research is, and must be, fluid if innovative research

is possible (Epple, 2010, p. 240). Epple states that he sees most accounts of mathematical knowledgeas

trying simultaneously to make room for two claims: 1) the objects of mathematics are timeless, and

2) the actual definitions of mathematical object are made at a particular time in a particular historical

context. However, it is evident that these claims are at odds regarding the context of discovery vs.

the context of justification.(Epple, 2011a, p. 482) To address this problem, Epple adapts the notion

of experimental systems coined by the chemist Rheinberger into the field of mathematics. Epple calls

these systems, in a mathematical context, epistemic configurations, which he regards as the smallest

productive units of mathematical research(Epple, 2011a, p. 487). Furthermore, Epple defines epis-

temic objects and epistemic techniques, which are the constituents of the epistemic configurations. Epple

defines epistemic configuration as:

"An epistemic configuration of mathematical research is the entirety of the intellectual

resources that are involved in a particular research episode. It comprises the mathematical

language, the skills and techniques at the disposal of the mathematician or the group of

mathematicians engaged in this research, the set of research topics and open problems

under consideration, the horizon of aims and more general heuristic guidelines followed

by the researchers, etc"(Epple, 2011b, p. 148)

Hence, the production of mathematical knowledge occurs in these epistemic configurations, and one

cannot discern the mathematician’s workplace, as these past scientific researchers were bound and
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formed by the time and place in which they lived. From this quote, we get a hint of two constituting

categories - something that can be applied in the research and something that drives the research.

This leads to the definition of the aforementioned epistemic techniques and epistemic objects:

"Generating new knowledge means posing and answering new, previously unthought

questions, or answering old questions in new, previously unimagined ways. Accordingly,

there are two kinds of elements involved in the cognitive practice of scientists: elements

that induce questions, that open up the future of research [epistemic objects], and elements

that generate answers [epistemic techniques], that produce a stable past for ongoing re-

search activity"(Epple, 2011b, pp. 148-9)

We can regard the epistemic objects as being question-generating and the epistemic techniques as

being answer-generating. Because of the historical boundedness of the epistemic configurations, it

is possible for an epistemic object in a later time to shift status and become an epistemic technique.

Thus, the objects of mathematical research arise in the processes of research as well as changes in

these processes. In connection to an inquiry-reflective based learning environment where one wants

to create an environment that are similar to a researcher’s there seems to be an opportunity to bring

forth and emphasise how procedures which might seem stable today occurred in the process of past

research.

This leads to Epple’s claim that: "The dynamics of the epistemic objects of mathematical research

are secondary to the dynamics of the epistemic configurations as a whole. To understand the for-

mer, it is necessary to understand the latter"(Epple, 2011a, p. 488). Therefore, when one is trying

to understand mathematics from the past, one needs to regard the technical framework in which it

is placed, i.e. what knowledge was available at the time, what were the objects to be studied, what

motivated the investigation, and so on. For example, we can trace back the word tangent to Euclid’s

work, however, to understand what this expression meant at the time, we should investigate what it

meant for Euclid himself and what knowledge he had available because definitions are ever changing.

In relation to the Multiple perspective approach and the notion of the mathematician’s workplace,

we argue that these epistemic configurations that Epple defines are analogous. With the use of Ep-

ple’s terms, epistemic objects and epistemic techniques, we gain greater precision when we consider

a historical episode because this will give us a vocabulary and allow us to analyse the mathematical

practices at stake. Furthermore, in connection with the concept of Observer history Epple’s theory en-

ables us to identify and analyse the historical mathematical papers with respect to the time in which

they are placed. In this way, we can get an analytic tool that enables us to orient our teaching se-

quence in the design phase in regards of observer history.

In order to create a learning environment where the students have the opportunity to reflect upon
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their own understanding of mathematical rigour trough an inquiry of two historical episodes, it can

be fruitful to pose questions about the production of mathematical knowledge. About such questions,

Epple writes:

If such questions are seriously posed, the activities of mathematicians appear in a differ-

ent light. Issues such as the specifics of the mathematical language used in a particular

period and region, the possibilities offered and the limits imposed by particular concep-

tual frameworks or ways of imagination, the differences in proof strategies and standards

of rigor (...) move into focus. (Epple, 2011b, p. 133)

With this in mind, combined with the concept pair of action vs. observer history use, we see an

opportunity to bring forth the standard of rigour in the time the historical episodes took place with

an observer history use. The shift to an action use of history will foster an opportunity for the students

to orient themselves in the present standards of rigour in relation to area determination.



Chapter 3

Didactical Theory

In this thesis we will employ the theory of the Anthropological Theory of Didactics (ATD), which will

constitute the didactical part of our theoretical framework.

The Anthropological Theory of Didactics was founded by Yves Chevellard in the 1980s as a research

program in mathematics education with the assumption that knowledge is a human activity which

takes place in an institutional setting (Bosch and Gascón, 2014, 68). ATD is driven by the search for a

rationale for any piece of knowledge to be taught, and in this way, it shares a fundamental assump-

tion with The Theory of Didactic Situations, albeit it is different (Barquero and Bosch, 2015, p. 261).

ATD is a research program in constant development, and new elements are therefore continually

added. In this thesis, we will make use of some elements, namely; The Didactic transposition, the

Didactic Contract, Praxeologies, Study and Research paths and Media-milieu dialectics. We will ac-

count for these elements in this section. Throughout this section, we will also point out the most

apparent connections with the two historiographical theories already accounted for.

3.1 The Didactic Transposition

It is apparent that the institutional setting in which knowledge is produced, taught, and learned is of

great importance in ATD (Bosch and Gascón, 2014, 68). The process of transformation that the body of

knowledge undergoes from being produced in a scholarly setting to being taught in a educational in-

stitution, i.e the transformations between the different levels of knowledge, is called the didactic trans-

position (Joaquim Barbé and Gascón, 2005). This notion provides a tool for analysing how knowledge

transforms between different institutions. The transposing of the body of knowledge takes place in

four stages, namely; 1) Scholarly knowledge, 2) Knowledge to be taught, 3) Taught knowledge, and

4) Learned knowledge (Joaquim Barbé and Gascón, 2005). This process can be illustrated as in Fig-

ure 3.1, in which we can also note that the transpositions are happening ’two-ways’, as this is not a

process of merely degrading and simplifying knowledge in order to be taught. This is a tool with

10
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which the body of knowledge in the different institutions can be made accessible for analysing and,

therefore, improvement.

Figure 3.1: The process of the didactic transpositions as illustrated in (Bosch and Gascón, 2014)

In general, scholarly knowledge is produced at scholarly institutions such as universities. Accord-

ing to the theory, the body of knowledge first has to be transposed into knowledge to be taught. This

happens in the noosphere, i.e. it is transposed by actors who "think about teaching" (Chevallard and

Bosch, 2014, p. 170), e.g. teachers and producers of knowledge. In the noosphere, different factors

need to be considered, such as what part of the knowledge is required to be taught, i.e. what do we

want the students to actually learn and be able to do, and how do we best keep the authenticity of the

knowledge and not risk distorting it in order to make it easier to understand. This is where knowl-

edge may also be disregarded as irrelevant for the citizens. In general, the knowledge to be taught,

and therefore the first transposition results in the official curriculum, textbooks, teaching guides, and

so on. This transposition is usually referred to as the external didactic transposition, as this happens

outside the school.

After the knowledge to be taught has been officially stated, it undergoes a transposition through the

teacher in a classroom setting. This transposition is called the internal didactic transposition because the

knowledge to be taught, handled in the noosphere, turns into actually taught knowledge. Due to the

transposition, this is different from the scholarly knowledge, but preferably the main elements of the

scholarly knowledge is preserved and appears as genuine as possible. Finally, the learned knowledge

becomes the knowledge that is available to the students.

This thesis investigates the bridge between each of the steps in Figure 3.1. We wish to show how

a mathematical historical approach can facilitate the transfer of knowledge from the historical schol-

arly knowledge about rigour and reasoning to taught knowledge in a classroom setting. Therefore,

we note that we regard historical knowledge, which is being used in the design phase, to be on the

scholarly level. Because we see a transposition of knowledge from a historical analysis of the subject

and sources to historical knowledge to be taught.
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3.2 Praxeologies

As already mentioned ATD considers knowledge as human activities, which should be understood

as: "(...) any human activity can be decomposed into a succession of tasks of various types." (Cheval-

lard and Bosch, 2020, p. 55). The notion of praxeologies is a key tool to describe the knowledge at stake

and the learned knowledge. In broad terms, learning is then describes as the formation of coherent

praxeologies (Bosch and Gascón, 2014, p. 68).

A praxeology consists of a praxis- and a logos-block. The praxis block is further divided in type of

task (T) and technique (τ), and similarly, the logos block is divided into technology (θ) and theory (Θ).

We denote a praxeology as the four-tuple [T, τ, θ, Θ] (Chevallard and Bosch, 2020, p. 55). This can be

illustrated as in Figure 3.2. Type of task is the starting point of a praxeology and is to be understood in

Figure 3.2: Praxeologies schematic representation

the broadest sense possible, form walking down the stairs to solving a quadratic formula (Chevallard

and Bosch, 2020, p. 55). In order to solve a task, one needs a Technique. When performing a specific

task, such as solving a specific equation, there is a specific way of doing it, hence a technique. These

two entities constitute the praxis-block of a praxeology. Note that it can be the case that the technique

used to solve a type of task actually consists of a sequence of techniques applying to subtasks within

the task. Therefore, we adopt the notation that:

Such techniques are denoted τi and the set of techniques solving the task: {τ1, ..., τn} where

n ∈ N. If we let P(τi) denote the subtask solved by the technique τi, then P(τi) ⊆ T. p. 13

This idea of viewing a sequence of techniques as one technique is in particular useful in this thesis

when we are analysing authentic mathematical sources.

Furthermore, there is a rationale behind the performance of solving a task. When this rationale is

put into words, we can regard this as a discourse about how and why the specific techniques can

and are used to solve a type of task. This is the definition of the Technology part of a praxeology. In

this way, the technology relating to a type of task legitimise and justifies the correct way of solving
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the task(Chevallard and Bosch, 2020, p. 55). Theory is the broadest category in a praxeology and the

second part of the logos-block. The theory justifies the technology itself, and in this way, it could be

thought of as a technology of the technology. This is indeed a very entangled part of a praxeology,

and "The distinction between the technological and the theoretical is neither clear-cut nor intrinsic:

it is essentially a functional distinction" (Chevallard and Bosch, 2020, p. 56). The theory should be

regarded as a bundle of technologies that share an overall theme, for example, probability or integral

calculus. With this, it is clear that ATD assumes that no human action can exist without a justification

of some kind. The formation of coherent praxeologies constitutes learning, and as Chevellard wrote,

we can say that: “praxis thus entails logos which in turn backs up praxis”(Bosch and Gascón, 2014,

citted on p. 68)

Praxeologies, i.e. sets of these four described elements form what is called a mathematical organi-

sation, henceforth abbreviated MO (Barbe Farre et al., 2005, p. 237). We can determine praxeologies

on three different ’levels’ and thus characterise different mathematical organisations. The smallest

level is called the punctual MOs, which consist of a unique type of task solved by a unique technique,

i.e an one-to-one correspondence of type of task and technique. On a broader level, a collection of dif-

ferent types of tasks with the shared technological discourse are called local MOs. Finally, a collection

of local praxeologies, all drawing on the same theory, are referred to as regional MOs. In conclu-

sion, the notion of praxeologies offers a general epistemological model of mathematical knowledge

where mathematics is regarded as a human activity that materialises as the study of types of prob-

lems (Joaquim Barbé and Gascón, 2005, p. 5).

With the historiogrpahical theories that we have accounted for in mind, we can now explicitate a

connection to the notion of praxeologies. First is the fact that praxeologies are regarded as bounded

by the historical time in which they emerge. Because: "Praxeologies do not emerge suddenly and

never acquire a final shape. They are the result of ongoing activities, with complex dynamics, that in

their turn have to be modelled."(Bosch and Gascón, 2014, p. 69). In this way, praxeologies are closely

tied to the historical setting, i.e. praxeologies are defined by and defining of the epistemic configu-

rations in which they arise. Second is that the dynamics of praxeologies can be viewed in relation to

the dynamics of epistemic objects and epistemic techniques, because:

The fact that any piece of knowledge (i.e., any praxeology) can be considered as an answer

provided – explicitly or de facto – to a question Q (a problem or a difficulty) arising in an

institutional setting (or a “situation”). Question Q then becomes the “raison d’être” of the

praxeology constructed, a rationale evolving as the praxeology develops and integrates

into other kinds of activities, for instance to provide answers to other kinds of questions.

It often occurs that the raisons d’être at the origin of most praxeologies disappear with

time, and people end up doing things out of inertia or habit, without questioning their

way of doing nor considering the possibility of changing them.(Bosch and Gascón, 2014,
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p. 70)

As such some things can become a mere habit after a period of time. Something that once could be

placed in the logos block can with time move and become a part of the practical block. A similar shift

as the epistemic things, which once were question generating can through time become an epistemic

technique and therefore function as answer generating. Third of is the importance of our inclusion of

the multiple perspective approach to the history of mathematics also come forth in the following:

In the course of their long history, human societies may have arrived independently at

similar solutions to some of the issues that beset them. More importantly, human societies

are not true isolates, and, consequently, they generally share a part of their “praxeology

pool” (Chevallard and Bosch, 2020, pp. 57-8)

In this way praxeologies are tied to the different mathematicians work place in which external factors

have an importance of the development of mathematics.

3.3 Study and Research Paths

Study and research paths (henceforth abbreviated SRP) were introduced by Chevallard as a part of

the program ’Questioning the World’ (Chevallard, 2015, p. 177). An SRP is a design tool intended to

foster autonomous inquiry where the conjunction of studying material and existing knowledge and

researching questions is seen as crucial in order to develop knowledge (Winsløw et al., 2013, p. 269).

In a SRP sequence, students’ work takes point of departure in a teacher-posed generating question,

denoted Q. The generating question fosters an answer process and a question process, because:

Students should understand the question but not be able to answer it, unless they engage

in a study and research process. This process is supposed to be driven by initial hypothesis

of an answer, which is incomplete and therefore lead to new, derived questions Qi. In

order to answer the derived questions, the students are supposed to study media to gain

new knowledge. Media are the works of others, like textbooks, webpages, podcasts and

other materials produced in order to disseminate (mathematical) knowledge (Jessen, 2017,

p. 5).

The students’ work with the qenerating question in a SRP sequence consists of the three following

phases as put forth by Winsløw, Mathreon and Mercier:

1. Identifying "official" knowledge that can help answering Q. This is the activity of

"study" of Q, based on the consultation of resources in media (books, Internet and so

on) and on knowledge previously studied, which can act both as part of the shared

praxeological equipment of the students and as media that are (re)consulted.
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2. Creating and justifying answers to Q through more or less pure reasoning. This is the

activity that we designate as "research" on Q (...)

3. Elaborating new questions from Q. These questions may be

(a) Subquestions Q1, Q2,... for which answers provide partial answers to Q

(b) Derived questions Q∗, motivated by Q or by answers to Q, but where an answer

to Q∗ does not itself answer Q wholly or in part (Winsløw et al., 2013, p. 270)

The derived questions that occur in a SRP sequence are naturally connected and are not always

student-posed. They can be teacher-posed in order to guide the students or to ensure that the stu-

dents work on some parts of the intended knowledge to be taught. The intervention of the teacher

does not interfere with the natural connection in the sequence. In our teaching sequence, where we

will make use of historical sources, it is noted that in the sense of these three phases in a SRP sequence

above, these will be regarded as media.

A SRP sequence is often used in the design of an inquiry based learning environment and here we

tend to use it as a tool for creating an inquiry-reflective learning environment. Together with the mul-

tiple perspective approach, that can be used to facilitate such an environment, as argued by Kjeldsen,

we see an advantage of choosing and designing our teaching sequence based on SRP because this

design tool relies on an open generating question in order to facilitate such an open inquiry.

3.3.1 Representation of Study and Research Paths

In order to simultaneously describe and evaluate the students’ inquiry in our teaching design, we will

make use of the diagrammatic ’tree-like’ representation of how questions and answers are connected

in the SRP, as proposed by Winsløw, Matheron and Mercier (Winsløw et al., 2013). Figure 3.3 is an

example of such a diagram. The shading in the diagram indicates who raised the question. The black

shading denotes the teacher, the white a student, and the grey a collaboration between student and

teacher.

Figure 3.3: Illustration of an SRP tree diagram from Winsløw et al. (2013)

This representation tool is not only useful regarding an analysis of a realised teaching sequence. It is

also useful in an a priori analysis of the sequence, as such an analysis will make the possible student



Master thesis Nynne & Amanda Page 16/ –

outcome clearer and therefore can work as a tool in the design phase in order to orient a teaching

design.

3.4 Media-Milieu Dialectics

We can describe the students’ autonomous process of study and inquiry using the tool the Herbartian

Schema if we regard: "Students’ knowledge construction (...) as the result of the dialectics between

study and research processes" (Jessen, 2017, pp. 5-6). The media-milieu dialectics arises from the

students’ gestures in the interaction and study of the generating question. It is made up of the contin-

uous interaction and assessment between partial answers given by the media available to the students

and their autonomous research through the interaction with an a-didactic milieu (Kidron et al., 2014,

p. 158). With this in mind, we can use the Herbartian Schema to describe how partial answers make

other questions arise, which consequently will initiate a further study and research process. Jessen

(2022) characterises the study process of a SRP sequence as:

Existing answers, works and data are all media to be studied in SRP’s. The study process

is characterised as deconstruction of knowledge, where research is considered reconstruc-

tion of knowledge as it is when existing knowledge, data and new knowledge are pieced

together in terms of partial or more complete answers, A♡
i to the generating question.

(Jessen, 2022, p. 233)

The heart designates that the answer, A, is personal to the student or group who developed it. In

short, the Herbartian Schema can be represented as the function:

(S(X; Y; Q0 ➦M) ➥A♥ (3.1)

where

M =
{

A♢
i , ...Wj, ..., Dk

}
(3.2)

In this function, S represents the didactic system of the SRP, and this consists of X, which is a group

of students, Y representing the teacher or other people assisting the students in the SRP sequence,

and finally the generating question Q0, which is studied. In order to produce answers, one is in

need of materials, which we say make up the didactic milieu M that is established by S(X; Y; Q0) →
{Ai♢,...Wj, ..., Dk}. Hence in the function above M = {Ai♢,...Wj, ..., Dk}. In which the Ai’s denote

the students’ previously developed answers, which they often will try to use in order to answer the

generating question(Kidron et al., 2014, p. 158). Wj denotes the new knowledge acquired by the study

of the various kinds of resources in the SRP sequence, i.e. textbooks, webpages, YouTube videos, or

other media regarding mathematical knowledge (Jessen, 2022, p. 233). Finally, Dk denotes the new

data consulted in the study process. In relation to our thesis, this will be the historical sources.
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3.5 The Evolution of the Didactic Contract

The notion of Didactic contract is an interpretation of the commitments, underlying expectations, and

beliefs of a didactical situation of the involved actors, i.e. students and teacher in the classroom. The

objective of this notion is to interpret and account for the actions and reactions of the actors within

the didactical situation(Brousseau et al., 2020, p. 197). Such reactions and actions occur due to the

fact that the teacher manages the didactical situation, which creates and exploits mathematical situa-

tions in which students’ mathematical knowledge is developed (Brousseau et al., 2020, p. 197). This

notion originates from the older French tradition in didactics of mathematics, namely the Theory of

Didactic Situations (henceforth abbreviated TDS) coined by Guy Brousseau in 1997. Recent research

has sought to point out points of contact between ATD and TDS as well as some needed theoretical

developments (Barquero and Bosch, 2015). In this, they argue that with the implementation of ATD,

there is an evolution of the didactic contract due to the changed classroom procedures produced by the

use of SRPs. In this section, we will account for the evolution of didactic contract (henceforth called

didactic contract) as this will be employed in our data analysis.

The traditional sharing of responsibilities in the classroom between teacher and students changes

because:

Implementing an SRP requires students to assume different roles in the inquiry process,

such as seeking available answers, validating or rejecting them, raising new questions,

deciding which ones to follow or discard, planning the work to do, etc. Teachers also

experience essential changes in their tasks: they are no longer the “knowledge holders”

nor the sole person bringing new knowledge into the classroom (Barquero et al., 2022, p.

3)

The notion of the didactic contract can therefore be used to identify occurrences in the realised teach-

ing design that could be explained by the new responsibilities in the classroom that both teacher and

student have.



Chapter 4

Established Research Methodologies

In this section, we will account for two already established research methodologies for designing

teaching sequences and experimentation in classroom. The first is within the framework of ATD,

which we intend to evolve by drawing inspiration from the second established research methodology,

which concerns the implementation of authentic mathematical sources in the classroom.

4.1 Didactical Engineering

Didactical Engineering (henceforth abbreviated DE) was initially developed in connection with the

Theory of Didactical Situations in the early eighties (Artigue, 2014, p. 467). DE was developed as a re-

search methodology that is based on a controlled design and experimentation of a teaching sequence

(Artigue, 2020, p. 203). The validation of research carried out within the frame of this methodology

is internal and is based on a comparison between an a priori analysis and an a posteriori analysis of

the designed teaching sequence (Artigue, 2014, p. 470).

Figure 4.1: Phases of DE within the framework of ATD figure from (Barquero and Bosch, 2015)

DE is structured around four phases, namely; a preliminary analysis, a priori analysis, realisation

with the intend of data collection, and a posteriori analysis and validation. This can be illustrated

18
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as in Figure 4.1, considering the numbers one through four. Berta Barquero and Marianna Bosch

proposed an evolved conception of DE within the framework of ATD, in which they articulated each

of the four phases of DE in terms of ATD, which can be stated as in the Figure 4.1(Barquero and Bosch,

2015).

4.2 A Methodological Triangle for using Authentic Mathematical

Sources in Mathematics

Mikkel Willum Johansen and Tinne Hoff Kjeldsen have proposed a methodological triangle for using

original sources in the classroom that is based on creating an inquiry-reflective learning environ-

ment (Johansen and Kjeldsen, 2018), which we intend to draw inspiration from. They regard their

model as: "(...) a mediating link between the theoretical analysis of sources from the past and a

classroom practice where the students are invited into the workplace of past mathematicians through

history"(Johansen and Kjeldsen, 2018, p. 27). They have developed this research methodology based

on the view that the possible benefits of using original sources in the classroom do not materialise

automatically. Therefore, they aim to accommodate the question of why and how the use of origi-

nal sources can support the teaching and learning of and about mathematics (Johansen and Kjeldsen,

2018, p. 36). They hypothesise that:

(...) the encounter with the historical artefact will give the students the opportunity to

experience something that seems foreign to what they already know, feel familiar with,

consider as well-established or take for granted (Barbin 2011). We claim that such experi-

ences may help the students to expand their horizon of understanding and increase their

awareness of the function and importance of the cognitive artefacts they normally use.

(Johansen and Kjeldsen, 2018, p. 29)

As such, it is clear that their methodology is based on the usefulness of a historical artefact, which

they call cognitive artefact defined as: "(...) developed with the purpose of partaking in cognitive sys-

tems and processes" (Johansen and Kjeldsen, 2018, p. 28). Furthermore, they regard these cognitive

artefacts as being culturally and historically situated.

Johansen and Kjeldsen describes three types of considerations which go into the design and imple-

mentation:

(1) Theoretical Analysis of historical Sources (TAS) from the perspective of aspects of the

nature of mathematics and historical insights and awareness; (2) Creation and framing of

an Iquiry-reflective Learning enviroment in Mathematics (ILM); and (3) Instructions for

practice promoting Students’ situated Relfections (ISR). (Johansen and Kjeldsen, 2018, p.

38)

Along with three processes that combine these considerations:
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(a) designation of which aspects of mathematical research practices the teaching episode

should mimic, i.e. which part of a mathematical research ’workplace’ should the students

be invited into; (b) design of the teaching material that can promote students to reflect

upon aspects chosen for inquiry; and (c) evaluation of the development of students’ in-

formed conception of the aspects of the nature of mathematics, historical insights and

awareness with respect to the results of the theoretical analyses of the sources. (Johansen

and Kjeldsen, 2018, p. 38)

These considerations and processed can be illustrated as Figure 4.2.

Figure 4.2: Methodological triangle for using original sources in mathematics education from illus-

trated in (Johansen and Kjeldsen, 2018, p. 38)

In conclusion, this research methodology seeks to put forth the mathematicians’ strategies and tech-

niques in the production of mathematical knowledge, which is available to us in the original historical

sources "from the perspective of the significance of cognitive artefacts" (Johansen and Kjeldsen, 2018,

p. 36)).



Chapter 5

Research Question

Now, we have established the theoretical background necessary to present our research question(s):

RQ0: How does the use of historical mathematical sources in an inquiry-reflective envi-

ronment impact upper secondary school students’ comprehension of rigour and reasoning

in relation to Area Determination?

In order to answer this question, the following questions have been developed:

• RQ1 How do we choose original sources, relevant to rigour and reasoning in regards to area

determination, to be implemented in an inquiry-reflective learning environment using SRPs?

• RQ2 How can we identify and accommodate challenges of teaching rigour and reasoning re-

garding area determination in upper secondary school in the design of a teaching sequence

centred around selected historical episodes?

• RQ3 How can exposing students to a fluctuation between action history and observer history

promote reflection on rigour and reasoning in relation to area determination?

We will answer these three questions in order to answer our research question, RQ0. In our work with

RQ1, we propose a research methodology based on DE within the framework of ATD and further de-

veloped with inspiration from the methodological triangle proposed by Johansen and Willumsen (Jo-

hansen and Kjeldsen, 2018). Regarding RQ2, we study the didactic transposition of integral calculus

from Scholarly knowledge to Knowledge to be taught. This is done in order to investigate rigour and

reasoning within this subject, as it relates to area determination. This will guide us, when we investi-

gate the rigour and reasoning in authentic mathematical sources and how they can be implemented

in a teaching sequence. Finally, regarding RQ3 we design a teaching sequence, which is tested in an

upper secondary school class at XXX Gymnasium. Based on gathered data of the realised teaching

sequence, we validate by comparing an a priori analysis and an a posteriori analysis of our teaching

sequence, thus the validation is internal.
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Chapter 6

Our Proposed Research Methodology

for Using Original Sources in Upper

Secondary School

In order to answer our research question, RQ1 (How do we choose original sources, relevant to rigour and

reasoning in regards to area determination, to be implemented in an inquiry-reflective learning environment

using SRPs?), we need to establish a research methodology of how the implementation of such sources

can be done. Here, we see a need for a research methodology that accounts for both ATD and his-

toriography, as we want to create an opportunity for students to reflect upon rigour and reasoning

regarding area determination using historical episodes. As such, this chapter relates to the ’how to’

part of our thesis.

We take inspiration from the methodological triangle for using original sources in mathematics edu-

cation (Figure 4.2) and combine this with the research methodology DE within the framework of ATD

(cf. Section 4.1) in such a way that we can create a research model within the framework of ATD and

historiography. Further, we propose to use the notions of epistemic configurations (cf. Section 2.2),

the concept pair Action history and Observation history (cf. Section 2.1), and expand the notion of

praxeologies slightly, with the term historical praxeologies.

Our aim gives rise to three important considerations, which our research methodology needs to ac-

commodate: 1) How do we select authentic sources that can be used in the classroom?, 2) How do

we identify concrete passages in the chosen texts that can be used? and 3) How do we create an

inquiry-reflective learning environment where students have the opportunity to work with historical

mathematical sources and use this to orient themselves in their present?
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In this section we will account for how we seek to accommodate each of the these three considerations

and sketch out the phases of our research methodology within our frame of ATD and historiography.

6.1 The Choice of Source

The first question that arise when we want to have the students work directly with a historical math-

ematical source, which is also level appropriate, is: How do we chose among the many sources avail-

able? The actual usefulness of the source is also dependent on an in-depth theoretical analysis of

the source. We suggest first deciding on a subject of interest within the official common objectives

of upper secondary school, followed by an investigation of the historical development of the chosen

subject to get a selection of possible sources.

As an example of a subject of interest, we chose in the present thesis to work with integral calculus in

upper secondary school. The integral has, through history, been motivated as a tool to determine an

area under curves. In upper secondary school, this is done with the Riemann integral, so this became

our focus. Based on this choice, we investigated the historical development of the Riemann integral

in a very broad perspective. It became clear it was established as a product of a long history of ques-

tions regarding area determination. By this, we established a selection of possibles sources through

this investigation for our thesis.

One should study the external didactic transposition through a praxeological analysis in order to nar-

row down selection of sources. This should be studied to identify the institutional conditions under

which the subject should be taught in upper secondary school. This study will guide the final choice

of sources to implement, as this will make the body of knowledge in different institutions accessible

for analysing and make it clear how the scholarly knowledge is made teachable and learnable. It is

evident that with a transformation of a body of knowledge, there is a risk of oversimplification of

the knowledge in order to fit it to the intended level. The study of the didactic transposition can be

used to shed light on such problematic transpositions, which can guide how one sorts through the

selection of sources.

6.2 A Historical Theoretical Analysis of the Chosen Source

The second question which arise after one has chosen a historical mathematical source to bring into

the classroom is: how do we identify aspects in the source that can be used to develop students’

understanding in regard of the chosen learning goals of the teaching sequence? Our hypothesis is

that this is done through a theoretical historical analysis of the source (as also proposed by Johansen

and Kjeldsen (?)). In our theoretical framework, we argued that such an analysis can be based on the

notion of epistemic techniques, epistemic objects, and an expansion of the notion of praxeologies.
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As epistemic configurations are defined as the entirety of intellectual resources available in a par-

ticular research episode, it can be an extensive task to fully comprehend a mathematician’s epistemic

configuration. Epple argues that in order to understand the dynamics of the epistemic object, one

needs to understand the epistemic configuration as a whole (cf. Section 2.2). When implementing a

source in a teaching design, which seeks to place students in the workplace of the past mathemati-

cians, we suggest focusing on selected parts of the past mathematicians’ workplaces in which the

chosen source is situated in order to promote students to reflect upon the chosen aspects for inquiry.

The parts one should consider in regard to the mathematician’s workplace are: 1) the mathematical

objects under investigation in the past research episode (i.e. epistemic objects) and the motivation for

the research episode, 2) the available knowledge for the past researcher, e.g. the techniques available

as well as the mathematical standards and traditions in which the past mathematician is situated (i.e.

epistemic techniques). We argue that these parts constitute a sufficient foundation of analysis in order

to implement a historical source in a teaching context, as these parts shed light on the practice of the

past mathematician.

After the workplace of the past mathematician has been mapped out in respect to the two described

parts above, we suggest to expand the notion of praxeologies slighty, and we wish to use the term

Historical praxeologies to encapsulate our expansion. As accounted for, knowledge is constructed by

human activities, which are dependent on the institutional setting according to ATD, and knowledge

can be described as praxeologies, which: "(...) do not emerge suddenly and never acquire a final

shape. They are the result of ongoing activities, with complex dynamics, that in their turn have to

be modelled" (Bosch and Gascón, 2014, p. 69). We argue that this points to a historical dimension

of praxeologies, and if we furthermore regard an epistemic configuration an institutional setting, we

can use the notion of historical praxeologies to describe the knowledge at stake in the historical math-

ematical source. We argue that this can be done because the epistemic configuration is the entirety

of intellectual resources involved in the research episode under investigation, thus the epistemic con-

figuration is tied to the practice of the past mathematicians and therefore can be regarded as a kind

of historical mathematical institution surrounding the researcher. Based on these consideration, we

suggest that the second step of a theoretical historical analysis of the chosen source should be done

in terms of historical praxeologies, in which one should seek to point out historical praxeologies to

identify passages of the text that can be used in the development of students’ knowledge regarding

the chosen learning goals.

In this way, we propose that a theoretical historical analysis of the chosen source in order to im-

plement it in a teaching sequence where ATD functions as the didactic framework should be done in

two steps; 1) an analysis of the past mathematicians’ workplace in light of the two steps described

above, and 2) an analysis of the source in terms of historical praxeologies.
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6.3 Creation of the Inquiry-Reflective Learning Environment

The third question that arises, is: how do we create an inquiry-reflective learning environment that

fosters students’ autonomous inquiry in such a way that the knowledge to be taught regarding the

source can support an orientation in the students’ present mathematical education? As Kjeldsen

noted:

(...) we have to keep in mind that the mere exposure to historical development processes of

mathematics is not enough for students to develop informed conceptions about the nature

of mathematics - for this to happen, students must be challenged to reflect explicitly and

critically upon concrete aspects of the nature of mathematics(...) (Kjeldsen, 2014, p. 43).

For this purpose, we suggest making use of SRPs as a design tool in combination with the concept

pair action history and observer history (cf. Section 2.1).

We suggest that the concept pair action history and observer history can be used to identify, artic-

ulate, and distinguish between different uses of history. Kjeldsen has already argued that Bernard

Erik Jensen’s concept pair, when adopted to mathematics, can function to: "(...) orient design and fu-

ture implementation of history to clarify and target learning goals and teaching intentions" (Kjeldsen,

2011, p. 6). With the incorporation of both the uses of history, we can create a learning environment

in which the students fluctuate between observer and action history.

We argue that this fluctuation is crucial in order to create and inquiry-reflective learning environ-

ment in which the students are placed as observers in the past mathematicians’ workplaces, thus are

encouraged to understand the past on its own terms through an inquiry of the sources. Hereafter, the

students should be promoted to reflect upon present mathematics in the light of their new historical

knowledge. By fluctuating between the two uses, and not only conforming to action use of history, we

can create an environment where the students can work in way which are analogous to mathematical

researchers, as they are encouraged to work as the past mathematicians. Which is exactly one of the

obstacles in setting up an inquiry-based learning environment. Therefore, both uses are needed.

6.4 Phases of DE within the Framework of ATD and Historiogra-

phy

We have now argued how we can accommodate the three considerations that arose when seeking to

implement historical sources in the classroom. Based on this, we propose to elaborate on the already

established research methodology DE within the framework of ATD by adding the dimension of his-

toriography.
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We propose that the first phase in DE should contain both a usual praxeological analysis of the con-

tent at stake in order to study the didactic transposition, and a theoretical historical analysis of the

chosen sources carried out in terms of epistemic objects and techniques and our suggested notion

of historical praxeologies. We also propose, that in the second phase one should seek to create an

inquiry-reflective learning environment with the use of SRPs and the fluctuation between an action

and an observer history use. Furthermore, we propose, when conducting an a posteriori analysis, that

one should both seek to study how the students formed coherent praxeologies and coherent historical

praxeologies, as the first is closely linked to an action history use and the latter to observer history use.

Furthermore, when implementing original sources we need to make sure what the validation takes

place against. In the more typical modelling context the validation takes place "against the perceived

reality, why media representing this must be part of the milieu" (Jessen and Kjeldsen, 2022, p. 110).

In terms of the Herbartian Schema, we argue that in a teaching sequence which uses original sources,

the validation takes place against the students’ perception of rigour and reasoning. Even though this

perception is personal to the students, we regard it as part of the students’ existing knowledge A♢
i .

In conclusion, our proposed research methodology incorporates both ATD and historiography. This is

an extension of DE which accounts for the use of historical episodes while conforming to the internal

validation of DE, based on the confrontation between a priori and a posteriori analyses.



Part II

Content Analysis
Reason and Rigour in Relation to Area Determination
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Chapter 7

Introduction to Part II

In this part we will give a brief overview of the history of area determination as this has supported our

choice of historical episodes included in the teaching design. Furthermore we will study the didactic

transposition of rigour and reasoning in relation to area determination from scholarly knowledge to

knowledge to be taught. The didactic transposition will be studied based on rigour and reasoning

in relation to the Riemann integral, as this is a common tool for area determination in a scholarly

context, which is also taught in Upper secondary school. As such this part concerns RQ2 (How can we

identify and accommodate challenges of teaching rigour and reasoning regarding area determination in upper

secondary school in the design of a teaching sequence centred around selected historical episodes?).

The analysis of scholarly comes in two parts. First, we analyse the chosen historical episodes from a

scholarly viewpoint. Then we will analyse the rigour and reasoning related to the Riemann Integral

on a contemporary scholarly level. The mathematics of the historical episodes is related to area de-

termination, and has been a precursor for the development of the Riemann integral. We conclude the

chapter with an analysis of the didactic transposition of the Riemann integral as well as rigour and

reasoning.
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7.1 Defining Rigour and Reasoning

In order to analyse rigour and reasoning in relation to area determination we need to establish what

we mean by these terms. Gila Hanna wrote an entry in the Encyclopedia of Mathematics Education called

Mathematical proof, Argumentation, and Reasoning, which she begins by noticing that: "Argumentation,

reasoning, and proof are concepts with ill-defined boundaries. More precisely, they are words that

different people use in different ways." (Hanna, 2020, 561). From this it is evident that we must estab-

lish what we mean when we use these notions.

According to Gila Hanna, argumentation "(...) includes any technique that aims at persuading others

that one’s reasoning is right."(Hanna, 2020, 563). We adopt this conception of argumentation, and

thus we need to establish what we mean by reasoning in a mathematical context. Hanna suggest

that we may take reasoning as "to mean the common human ability to make inferences, deductive or

otherwise" (Hanna, 2020, 563). Within mathematics we need defined rules of reasoning in order to

reach a valid conclusion. For example one form of reasoning is through formal logic with the use of

an axiomatic method, in which one would employ formal notation, syntax, and rules of interference

in order to permit the validity of the proof to be checked.

In mathematics we could therefore say that we persuade others of the truth of a statement by playing

by a set of established rules - this is more or less the role of proofs in mathematics. In the simplest

form, a mathematical proof is: "(...) a logical derivation of a given statement from axioms through

an explicit chain of inferences obeying accepted rules of deduction." (Hanna, 2020, 562) This is in

line with the the modern axiomatic-deductive method in mathematics, and we adopt this definition

of a proof in this thesis. It is evident from Hanna’s entry that there is no consensus about whether

the mathematical proof falls under argumentation. Therefore, we want to clarify that we consider

performing formal proofs as argumentation, in accordance with our conception of argumentation, as

we find that the aim of a proof is to establish truth, which can be accepted by peers (i.e. ’persuad-

ing them that the mathematical assertion is ’right’). However, we note that mathematics can contain

other forms of argumentation than the mathematical proof.

There is no direct entry in the Encyclopedia of Mathematics Education regarding rigour, so when we

use this term throughout our thesis we also need to clarify what we mean by this. For the purpose of

this thesis we define mathematical rigour as:

Mathematical rigour pertains to the use of logical deductions in order to establish the truth

of a stated hypothesis.

This is also in line with how Hanna uses the word, when she states that "contemporary mathematical

practice is trending toward the production of proofs much more rigorous and formal than those of a
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century ago (Wiedijk 2008). In practice, however, one cannot write out in full any formal proof that is

not trivial, because it encompasses far too many logical inferences and calculations."

There are many types of proofs in mathematics, some of the most common ones being direct proofs,

proof by contradiction and proof by induction. In basic mathematical analysis, the most common

type of proof is the direct proof (Eilers et al., 2018, 443). Here, one lists all assumptions made in a

theorem, and use already established knowledge, usually previously established definitions, axioms

and theorems, to draw the conclusion in question. A direct proof which follow this structure we re-

gard as being rigorous according to our previous definition.

A rigorous mathematical argument leaves no room for ambiguity or doubt and adheres strictly to

the rules of logical deduction and mathematical principles in order to prove a hypothesis, and thus

establishing said hypothesis as a theorem.



Chapter 8

Scholarly Knowledge

In order to set up an inquiry-reflective learning environment in mathematics where the students have

the opportunity to work with mathematical rigour through authentic mathematical sources from

Archimedes and Newton, we need to identify in what passages of the sources the rigour and rea-

soning can be discussed, identified and articulated. For this purpose we proposed, in our established

research methodology within the framework of ATD and historiography (cf. Section 6), that this

should be done through a theoretical historical analysis of the sources.

First, we give a brief account of parts of the history of area determination, which guides the choice of

historical episodes in focus. We will implement two historical sources in our teaching design, namely

Proposition 1 from Archimedes’ work The Method, and the proof of Rule 1 from Newton’s On analysis

by infinite equations. Next, in the theoretical historical analysis of the sources, we use the notions of

epistemic techniques and objects to establish the workplaces of Archimedes and Newton, and his-

torical praxeologies to analyse the rigour and reasoning of the argumentation given in the authentic

sources. Finally, we will investigate the contemporary scholarly knowledge on area determination

for rigour and reasoning, which will also be useful for the design phase.

8.1 History of Area Determination

In this section we give a brief overview of the history of area determination. We limit ourselves to

the investigation of area determination and disregard the history of rigour and reasoning within this

field. As argued in our proposed research methodology, such a historical overview is put forth in

order to gather a selection of authentic mathematical sources, which relates to the chosen subject in

the official curriculum - for this thesis the integral calculus, which is related to the history of area

determination. Thus, this overview only serves to support the question of why the chosen authentic

sources is within the field of area determination. In Section 8 we will analyse the rigour and reasoning

of the chosen text.
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Records show that ancient civilisations such as that of Mesopotamia knew how to calculate simple

areas. Methods which still hold true today. The subject of area determination was motivated by a

need for humans to measure and divide land for agriculture, trade, construction (Katz, 1998).

The Egyptians had a simple method to estimate the area of the circle, which is evident from the

Rhind papyrus, dated to 1650 BCE. In the Rhind papyrus, using modern terminology we are told that

for a circle with diameter d the area of the circle is determined by the formula: 64
81 d2 (Katz, 1998).

In the 5th century Greece BCE it was shown that the area of a disk is proportional to its radius squared,

thus the determination of curved bodies entered the scene at this point in the Greek civilisation.

The Pythagoreans, a group of mathematicians surrounded the Greek mathematician and philosopher

Pythagoras, active in the 6th century B.C.E. believed that numbers (i.e. positive integers) formed the

basis of the universe. Part of this believe led to the understanding that all lengths of geometric figures

could be counted, which in practice meant that the Pythagoreans believed that one could find a com-

mon measure for the side and the diagonal of a square. It was however refuted with the discovery

that the side and diagonal of a square are in fact incommensurable. This discovery (430 B.C.E.) forced

a change of some of the basic mathematical understandings of the Greeks (Katz, 1998, p. 48-51). The

incommensurable numbers were not regarded as ’numbers’, which led the Greeks to treat area deter-

mination in the means of comparing lengths and areas. For example they would compare the area of

one plane figure to another which they could calculate the area of in order to determine the area of

the first. This ultimately led to Eudoxos of Cnidos (c. 390-337 BCE) to form The Method of Exhaustion -

a mathematical technique which find the area of a figure by inscribing and circumscribing polygons

in- and outside with an increasing number of sides such that the areas of the polygons will ’merge’

to be equal to the area of the figure under investigation. Archimedes, another Greek mathematician,

also investigated the subject of area determination. He used his own mechanical method The law of

the lever, which could indicate a result afterwards he would provide a proof of by a geometric method

(we will treat this in depth in Section 8, as we have chosen a source from Archimedes). By the time

of Archimedes the greeks were able to determine the area of more advanced figures, such as the

parabolic segment and ellipses (Katz, 1998).

Now, we make a jump to the 17th century. This does not reflect that nothing happened in 2000 years

we skipped - it is merely out of the scope of this thesis to delve into everything. Rather, our focus

here is on historical episodes that led to Newton’s mathematics as we have already treated the history

which led to Archimedes’ method. In this time of history there was a search for methods of determin-

ing areas which were less complex than The Method of Exhaustion and more straightforward (Katz,

1998).

Descartes, Fermat, commonly known as the fathers of analytic geometry as they in the beginning
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of the 1600’s "both [...] present the same basic techniques of relating algebra and geometry. Both

men came to the development of these techniques as part of the effort of rediscovering the "lost"

Greek techniques of analysis"(Katz, 1998, p. 432). In short, the development is motivated by trying

to replace Greek geometric analysis with a geometric version. The tool which came with the analytic

geometry led more or less to the development of infinitesimal calculus, where Newton and Leibniz is

credited as the founders - even though their method were very different. Leibniz discovered that dif-

ferentiation and integration were ’opposites’ - with the modern analysis we express this relationship

by the main theorem of infinitesimal calculus (Katz, 1998).

The modern way to determine areas under functions is by the Riemann integral which first came

to be i 1854 by Bernhard Riemann in 1854 (Katz, 1998).

In conclusion this historical overview guides our choice of historical episodes, namely Archimedes

and Newton, as it puts forth possible historical episodes which can be related to The Riemann integral

of today.

8.2 Archimedes

Archimedes of Syracuse (c.287 – c.212 BC) was an ancient Greek mathematician and scientist. He did

not only contribute to mathematics with the discovery of new results - he also changed the game by

disclosing his methods of discovery and exhibiting numerical calculations, in contrast to the mathe-

maticians who came before him such as Euclid (who did not provide details of method of discovery,

(Katz, 1998, p. 111)). Euclid mainly provided geometrical proofs of concise theorems, without much

explanation of how the results were discovered in the first place (Katz, 1998, p. 103).

We chose the mentioned text from Archimedes because it easily falls into out the subject of area

determination, in extension there is a historically clear path from the segment of the parabola and

the use of indivisibles to the notion of functions and limits in contemporary mathematics. Further-

more Archimedes provides explicit considerations about the rigour and reasoning regarding his text,

which we expect to be accessible to the students without a lot of transposition. Lastly - but definitely

not least - the text shows examples of mathematics that is considered rigorous (both then and now),

along with arguments from mechanics, of which the rigour is debatable, according to the standards

in Archimedes present, and the use of indivisibles, of which the rigour is more than debatable.

8.2.1 Archimedes’ Workplace

Archimedes investigated many fields, and mathematics was only one of them. We focus this analysis

on his work as a mathematician, in particular on the research episode of developing and publishing

The Method. With this treatise, Archimedes changed the game by writing a treatise which mainly



Master thesis Nynne & Amanda Page 34/ –

aimed to investigate methods of discovery. Which is in contrast to Euclid’s Elements which only con-

tained definitions, axioms, theorems and proofs, and thus never presents a method of discovery.

The Method was discovered in 1899, and was inspected by Heiberg in 1906. Soon after, the Greek

text was published. We will base our analysis on the English translation of the Greek text which is

made by the English philologist Thomas L. Heath (1861-1940). Therefore one must note that this is a

text which we read in translation and some things may be altered or modernised. However it is out

of the scope of this thesis to investigate the original Greek text.

In the preface of The Method, Archimedes reflects upon his titular method:

This procedure is, I am persuaded, no less useful even for the proof of the theorems them-

selves; for certain things first became clear to me by a mechanical method, although they

had to be demonstrated by geometry afterwards because their investigation by the said

method did not furnish an actual demonstration. But it is of course easier, when we have

previously acquired, by the method, some knowledge of the questions, to supply the proof

than it is to find it without any previous knowledge.(Heath, 1912)

It is evident from this quote that the mechanical method is in contrast to the Greek tradition of demon-

stration by geometry, and Archimedes makes it clear that he as well does not consider an argument

an actual demonstration unless it has been demonstrated by geometry. His proposed method is pre-

sented as a way to discover mathematical results not already known, under the believe that it is easier

to prove a result that is already suggested by his method. Archimedes repeats this after he had pre-

sented the application of his method, by stating:

Now the fact here stated is not actually demonstrated by the argument used; (...) we

shall have recourse to the geometrical demonstration which I myself discovered and have

already published. (Heath, 1912)

From this it is also evident that Proposition 1 had already been proved rigorously elsewhere by Archimedes

(according to Greek standards). In general in the treatise The method, Archimedes demonstrates his

method on propositions that have already been proved elsewhere with geometry.

Mathematical Objects under Observation

In The Method, Archimedes showcases his use of mechanical principles to derive mathematical theo-

rems, particularly those related to areas and volumes. Thus, the mathematical objects under investi-

gation are figures of plane and space, such as the parabolic segment (which is of particular interest to

us) and spheres, of which he aims to find the area and volume.

Therefore we need to consider how a parabolic segment were defined in Archimedes’ present. Ac-

cording to Heath it is probable that Archimedes adopts basic principles of conics, which he assumes
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without proof, from some of Euclid’s work (Schmarge, 1999). Euclid also deals with solid geometry in

Book XI of the Elements, where a cone is defined as the trace of rotating a right-angled triangle about

one leg:

XI.18 When, one leg of a right triangle fixed, the triangle is carried around and restored

again at the same position from which it began to be moved, the figure so comprehended

is a cone. And if the fixed leg is equal to the other leg, the cone will be right-angled; if

less, obtuse-angled; and if greater, acute-angled (as cited in (Katz, 1998, p. 91)).

We can think of the hypotenuse of the right triangle as a line generating a cone. In particular,

Archimedes is concerned with sections of what Euclid defines as the right-angled cone, and which

in modern terms would be called a parabola (Katz, 1998, p. 117). The idea of a conic section is to

consider how a plane intersects a cone. For instance, if the intersecting plane is parallel to the base of

the cone (i.e. the circle generated by the leg of the triangle that is not fixed), the intersection is a circle.

When the intersecting plane is parallel to a generating line of the cone, the intersection is what we

in modern terms would call a parabola, and this is exactly what Archimedes considers in Proposition

1(Katz, 1998, pp. 111, 117). The idea of cutting a cone with a plane is illustrated in Apollonius’ Conics,

although we note that Apollonius "decided to define the conic sections slightly differently [than Eu-

clid and Archimedes, red.]"(Katz, 1998, p. 117). It is out of the scope of this thesis to delve into details

of Apollonius’ definition, but we include an illustration that resembles one that appeared in his work

Conics as a visual aid which is also included in the compendium used in our teaching design. The

figure is shown in figure 8.1. It is important for us to note that even though the parabolic segment in

Figure 8.1: Example of conic section from Apollonius’ Conics

many ways resembles the parabola of modern mathematics, Archimedes understood this figure from

a different point of view than we do today. As such, the parabolic segment is also in contrast to the

definition of a parabola that students are familiar with from their upper secondary education (usually

treated in the first year). As such the epistemic object in Archimedes workplace is very different from
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today’s definition.

Available Knowledge

With the mathematical object clarified we now wish to investigate what knowledge was available

to Archimedes’ in this research episode. Overall, we identify three ’types’ of categories of epistemic

techniques; geometric, mechanical and indivisible.

The first type is established mathematical techniques, which is a mix of broadly accepted postulates at

the time and propositions that had already been established by methods of geometry. We assume that

the contents of Euclid’s Elements are a part of Archimedes’ available knowledge. In particular, Euclid

has three postulates of geometry that form the basis of construction of geometric figures:

1. To draw a straight line from any point to any point

2. To produce a finite straight line continuously in a straight line

3. To describe a circle with any center and distance(Katz, 1998, p. 61)

The demonstrations in The Method require the construction of figures, satisfying certain properties,

and in this process, we assume that Archimedes uses straightedge and compass to construct, just as

Euclid used. Thus, an important example of an epistemic technique that was available to Archimedes

is construction of figures with straightedge and compass, as we will see applied in more detail below

(cf. table 8.1). In The Method Archimedes also uses results that have been proved in Euclid’s Elements.

For example, proposition 2 from Book VI of the Elements is referred to explicitly in Heath’s translation

of the text. Finally, Archimedes draws on results he himself has shown in previous treatises. Notable

for our purpose is his works Quadrature of the Parabola, where Archimedes gives the proof of Proposi-

ton 1 from The Method, and On the Equilibrium of Planes.

Archimedes work On the Equilibrium of Planes brings us to the second type of epistemic techniques

we identify in Archimedes’ workplace: The mechanical techniques. Mechanical techniques are, as the

name suggests, techniques that rest on mechanics rather than geometry. While geometry is concerned

with the form of a body, and not its matter, one needs the notion of weight, which relates to the matter

of a material body when discussing balance and equilibrium. In The Method Archimedes is "balanc-

ing cross sections of a given figure against corresponding cross sections of a known figure, using the

law of the lever"(Katz, 1998, p. 111). As seen Archimedes noted in the preface of The Method that a

mechanical demonstration do not furnish an actual proof. Therefore it is evident that Archimedes

distinguishes between geometrical and mechanical methods, and thus we will do the same here.

Methods associated to the law of the lever will also be seen as mechanical epistemic techniques, i.e. re-

sults proved in On the Equilibrium of Planes.
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The principle of the law of the lever was well known before Archimedes, but as a physical problem

rather than mathematical. From the mathematical model that Archimedes provided, it was possible

to derive a mathematical proof, therefore Archimedes is credited for proving the law of the lever

(Katz, 1998, p. 103). Of course, in the idealised model, the complicated aspects of the real world are

ignored. For instance, Archimedes assumes that the lever was rigid and without a weight, and the

fulcrum and endpoints (weights) of the lever were considered as mathematical points, and thus ’has

no part’1Katz (1998).

Even though we here consider arguments from On the Equilibrium of Planes as mechanical rather

than geometric, the treatise is actually structured according to the standards of Greek geometry, with

postulates which are assumed, followed by propositions which are proved with geometric methods.

We wish to note that under the idealised assumptions in On the Equilibrium of Planes, the mathematics

is actually rigorous according to Greek standards.

Two propositions lead up to the law of the lever, which can be concatenated as such:

Proposition 6, 7 (On the Equilibrium of Planes)

Two magnitudes, whether commensurable [Prop 6] or incommensurable [Prop.

7], balance at distances reciprocally proportional to the magnitudes (Katz, 1998,

p. 106)

In the rest of the treatise, the law of the lever is applied to find the centre of gravity of various geo-

metrical figures (Katz, 1998, p. 107).

As seen Archimedes was quite aware that the titular method he provided could not be seen as a

rigorous proof. However he does not state explicitly where the issues arise, this discussion is out

of the scope of this thesis, and we follow the convention presented in Katz (1998), namely that it is

because "neither mechanical principles nor "indivisible" cross sections could appear in a formal math-

ematical argument"(Katz, 1998, p. 111).

This leads to the third and last type of the identified epistemic techniques: the method of indivisi-

bles. Indivisibles are geometric objects, which can be described as the theoretical entities thought to

be the smallest possible units that a geometric object is composed of. It is based on the Pythagoeran

believe that numbers (i.e. positive integers) formed the basis of the universe. Among others, Aristotle

(384–322 B.C.E.) rejected the notion of indivisibles, because he had concerns about the idea of treating

continuous quantities as being composed of indivisible units(Katz, 1998). Indivisibles were used in

Ancient Greece, but was not accepted as rigorous at the time (Katz, 1998). They appear in Proposition

1 when Archimedes argues that a geometric object can be ’made up’ of objects one dimension lower,

1A point is that which has no part Eukl. I definition 1
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e.g. a triangle is made up of lines, and a sphere of circles, and so on. This corresponds to accepting

the premise that a triangle can be divided into infinitely many indivisible lines, which will make up

the whole.

In summary, we find that in Archimedes workplace the epistemic techniques available can be di-

vided into three categories; geometry, mechanics, and indivisibles. The geometric techniques are as-

sociated with a high level of rigour, while the mechanical methods are considered less rigorous, and

the method of indivisibles is not considered rigorous at all. On a final remark, because Archimedes

(as argued) is aware of the lack of rigour, he uses a different method - the method of exhaustion -

when proving his findings with "an actual demonstration"(Heath, 1912). However, this method is not

relevant in the specific research episode we are investigating, and out of the scope of this thesis to

account for.

8.2.2 Historical Praxeologies in Proposition 1

Now that we have established Archimedes’ workplace in relation to the research episode of develop-

ing The Method, we wish to identify praxologies in the argument for Proposition 1, from the point of

view of Archimedes in his workplace.

In Archimedes’ text we read the following formulation of Proposition 1:

Proposition 1. (The Method)

Let ABC be a segment of a parabola bounded by the straight line AC and the parabola

ABC, and let D be the middle point of AC. Draw the straight line DBE parallel to the axis

of the parabola and join AB, BC.

Then shall the segment ABC be 4
3 of the triangle ABC.

With the result in Proposition 1, Archimedes was able to determine the area of a parabolic segment as
4
3 of the inscribed area.

The three types of epistemic techniques identified in Section 8.2.1 give rise to three distinct regional

MO’s. The established mathemtical techniques all stem from the theory of geometry, Θgeom. The mechani-

cal techniques are rooted in the theory of mechanics, Θmech, and praxeologies that concern the method

of indivisibles, we categorise as a theory on its own, Θindi. We refer to the praxeologies belonging

to each of the regional MO’s as geometric, mechanical and indivisible praxeologies, depending on the

particular MO.

It is debatable whether the use of indivisibles should be categorised as its own theory, but we decided

to do so, because it does not really fit with either geometry or mechanics. The ’jump’ of dimension

that occurs when adding indivisibles to construct a plane figure is not geometrically founded, while
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Figure 8.2: An illustration of the construction in Proposition 1(Heath, 1912)

lines with no breadth are still ’just’ a mathematical concept and does not exist in the real world, and

thus it is also at odds with mechanics.

In the argument for Proposition 1, we have identified praxeologies from all three regional MO’s. In

accordance to our proposed way of conducting a theoretical historical analysis with the intend to

implement this in a teaching sequence we find it essential to make sure that the students encounter

passages from the text related to the three regional MO’s, since they all make out the reasoning in the

text, and all shed a light on different levels of rigour. Below, we wish to provide some examples from

the text.

The first passage in Archimedes’ argument for Proposition 1 is mere construction, which can be illus-

trated as in figure 8.2. This passage is:

From A draw AKF parallel to DE, and let the tangent to the parabola at C meet DBE in E

and AKF in F. Produce CB to meet AF in K, and again produce CK to H, making KH equal

to CK.

Consider CH as the bar of balance, K being its middle point.

Let MO be any straight line parallel to ED, and let it meat CF, CK, AC, in M, N, O and the

curve in P.

In this passage, Archimedes’ adds lines to the figure, which has already been constructed in the state-

ment of the proposition. Most of the construction consists of geometric praxeologies, with types of

task such as "given a line and a point, draw a parallel line", "draw a tangent to meet a line in a certain

point", and so on. We will not go into details with all of them, as they appear quite similar, but we
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will provide one example shown in Table 8.1, note that the Greek letters denoting the lines and points

are added by us in order to better explain the associated techniques.

Type of Task Given a line α and a point β not on α, draw a parallel

line γ through β.

Techniques Locate the given point and line; mark a point on the

line; connect the points; draw matching arcs; mea-

sure distance with compass; copy distance; draw

arcs with compass and mark intersection; connect

new points

Technology Discourse about how geometric objects can be con-

structed with straightedge and compass

Theory Geometry

Table 8.1: The geometric praxeology of drawing parallel lines, identifying type of task, techniques

and technology

The technique in table 8.1 is actually a set of techniques P(τi). The construction of parallel lines with

straightedge and compass is just an example of how Archimedes might have done the construction

with Euclidean geometry, as we new he had available (cf. Section 8.2.1). In Table 8.1, the collection of

techniques is sketched very loosely, as it is out of the scope of this thesis to delve into the details. It is

included to point out the fact that, most of the praxeologies we identify in relation to the construction

may have some collection of techniques rooted in the same technology, namely the discourse about

constructing geometric objects with straightedge and compass. This technology is of course rooted in

Greek geometry. Thus, we identify a local (geometric) MO with regards to construction with straight-

edge and compass.

Though the praxeologies observed in relation to the passage above are mainly geometric, one line

in this passage stands out as rooted in mechanics, i.e.: "Consider CH as the bar of balance, K being its

middle point". The imperative word "consider" implies a more passive type of task compared to the

imperative word "draw", considered in the previous example. While "draw" promotes action, "con-

sider" simply prompts contemplation. In this way, the associated technique is closely related to the

task. The object under consideration is a line, which no doubt is a geometric object, but Archimedes

prompts the reader to assign a mechanical property to the line, making it a type of task belonging to

a mechanical praxeology. Already in the construction we see mechanical traits that compromises the

rigour of the argument, at least in Greek standards; The notion of balance is related to traits of the

real world, and one may be concerned about the mathematical foundation that underlies imposing

such a property on a line.
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The mechanical praxeologies appear throughout the text, mostly related to using the bar of balanced

established in the construction as a lever. As an example, consider the following passage from the

argument:

Take a straight line TG equal to OP, and place it with its centre of gravity at H, so that

TH=HG; then, since N is the centre of gravity of the straight line MO, and

MO : TG = HK : KN

it follows that TG at H and MO at N will be in equilibrium about K.

[On the Equilibrium of Planes, I. 6,7]

Before this passage, Archimedes establishes proportional relationships of different lines in the figure,

which we will not account for here. Instead, we investigate the task of establishing equilibrium be-

tween TG at H and MO at N about K. Which can be presented as in the table 8.2 below.

Type of Task Establish equilibrium between TG at H and MO at

N about K.

Techniques Application of the law of the lever

Technology Discourse from On the Equilibrium of Planes

Theory Mechanics

Table 8.2: The mechanic praxeology of establishing equilibrium

This is a straight-forward use of the law of the lever. When it has been established that the ratio of

the line segment MO to TG is equal to the ratio of the line HK to KN, it is inferred that Proposition

6,7 from Archimedes’ On the Equilibrium of Planes (cf. Section 8.2.1) applies, and in extension that MO

and TG are in equilibrium with K at the centre of gravity. Here, we can raise some questions about

the rigour. Proposition 6,7 deals with magnitudes that are proportionally reciprocal to their distances

to a point between them. The intuition here is real-world based, and intuitively when we speak of

balance, it is highly related to weight. The objects under consideration are not real-world objects, but

geometric lines, that one cannot assign a weight within the scope of Greek geometry. Out of respect

to Archimedes, we repeat that he never claimed the method was meant to provide rigorous proofs.

Finally, we turn to Archimedes’ use of indivisibles in the argument for Proposition 1. Above, we

discussed how Archimedes uses mechanical notions to establish the relationship between lines. In

particular, he establishes the relationship between the line TG and the line MO. Before this, MO was

chosen as an arbitrary section of the parabola with the only requirement that it is parallel to the line

ED, which is parallel to the axis of the parabola.2 TG was chosen to be equal to the part of MO on the

2"Let MO be any straight line parallel to ED"
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parabolic segment, OP.3 Thus, we can say that MO could be chosen as any section of the triangle AFC

parallel to the axis, and any cross section of the segment ABC parallel to the axis TG corresponds to

a choice of MO, and for any such choice of MO, it holds that MO : TG = HK : KN. Here, we are

comparing lines, which are one-dimensional sections of two-dimensional geometric objects. The next

step, however, is where the method of indivisibles is in particular in play:

And, since the triangle CFA is made up of all the parallel lines like MO, and the segment

CBA is made up of all the straight lines like PO within the curve,

it follows that the triangle, placed where it is in the figure, is in equilibrium about K with

the segment CBA placed with its center of gravity at H.

What happens here? First, we want to note that Archimedes does not actually use the word indivisible,

but it is implied when he states that "it follows" from properties of the lines that the same properties

hold for triangle AFC and the parabolic segment ABC.

We identify the process of transferring information between dimensions as a type of task in an in-

divisible praxeology.

Type of Task Apply properties for one-dimensional objects to

two-dimensional objects

Techniques Consider a two-dimensional object as "made up" of

one-dimensional objects

Technology Intuitive understanding of infinitely small divisions

of a two-dimensional figure

Theory Method of indivisibles

Table 8.3: The indivisible praxeology

As we have already encountered in the first of the mechanical praxeologies we discussed, we here

see the imperative word Consider again, however this time placed as part of the technique. Once

again the distinction between task and technique is not easily drawn, but we aim to point out that the

type of task here is to apply the results that have yet been found on the lines to the two-dimensional

figure they "make up". Here, the quotation-marks are very deliberate, as the related technology is

not so clear. To accept the technique, one must accept that a geometric object of the plane consists of

lines, even though lines in Greek geometry (as well as modern geometry) does not have any breadth.

As accounted for it was generally accepted that the use of indivisibles was not accepted in rigorous

mathematics, and thus the discourse surrounding the technique is highly intuitive.

We have now pointed out different regional MO’s in Proposition 1 and how they reflect different

3"Take any straight line TG equal to OP"



Master thesis Nynne & Amanda Page 43/ –

levels of rigour in Archimedes’ argument. As a final note before we continue to investigate New-

ton, we want to repeat that Archimedes never actually claimed that the argument was rigorous, but

encouraged this more intuitive approach in the process of mathematical discovery.

8.3 Newton

Isaac Newton (1643-1727) was an English scientist whose knowledge spanned a substantial amount

of subjects, which among others included mathematics, physics and astronomy. His contribution to

the scientific field in the 1600 were of great importance. Nowadays he is often mentioned along with

the German mathematician Gottfried Wilhelm Leibniz (1646-1716), because it is generally regarded

that they share the credit for developing infinitesimal calculus.

We chose the text Rule 1 from De analysi per aeguationes numero terminorum infinitas (On Analysis by

Equations with an infinite number of terms) because we expected it to be accessible for the students,

both when it comes to the definitions and the structure, and when it comes to a discussion of possible

discrepancies in the argumentation. For example, it can be discussed whether Newton divides by

zero, which is breaking a rule we expect the students are familiar with (i.e., it is not possible/allowed

do perform zero division).

8.3.1 Newton’s Workplace

In Newton’s work On Analysis of Infinite Equations, which he composed in 1969 based on ideas he de-

veloped during the years 1665-1666, he investigates properties of equations of infinitely many terms,

including determining the area under the curves which such equations express. However, we focus

on the research episode of investigating algorithms for determining the area under curves that can

be expressed with a finite number of terms. This is addressed in the paper On Analysis by Equations

Unlimited in the Number of Terms, as part of On Analysis of Infinite Equations and published in The

Mathematical Papers of Isaac Newton (Newton, 1969).

Objects under Investigation

The objects under investigation in the work in which we find Rule 1 are areas under curves that can

be expressed by a finite number of terms. Newton divides these curves into three types, the simple

curves, which are equations of a single term (e.g. y = x2), curves compounded of simple curves

(e.g. y = x2 + x
3
2 ), and finally, equations for curves where "the value of y or any of its terms be more

compounded than the foregoing"(Katz, 1998, pp. 211-213) (e.g. a hyperbola y = a2

(b+x) ).

Newton had a kinematic understanding of a curve, possibly inspired by Isaac Barrow (1630-1677),

whose lectures Newton had previously attended (Lund, 2000, 68). Newton considered variables of

an equation as a distance dependent on a constant increase of time, without ever giving a definition
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of time. He thought of curves as the trace left behind by fluent quantities changing at a certain rate or

fluxion, which is dependant on time. Newton adopted the notation established by Descartes, using the

last letters of the alphabet, such as x, y, . . . , to denote fluent quantities. Additionally, he independently

introduced dot notation for the fluxions of these fluents, represented as ẋ, ẏ, . . . . It is out of the scope

of this thesis to go further into details with the definitions of fluents and fluxions, but the notation

introduced here will be useful later. Newton refers to the area under the curve as the quantity of the

curve.

Available Knowledge

Now, we wish to investigate what knowledge Newton uses in the investigation of the research episode

under consideration, i.e. the epistemic techniques he uses in his investigation of the epistemic object,

which we clarified in the previous section.

Newton was well studied in Viète, Descartes and WallisLund (2000), but he also developed his own

methods. Here, we identify three categories of epistemic techniques; those related to analytic geome-

try, those related to what we will here call universal arithmetics, and finally, the methods that Newton

developed himself.

Analytic geometry, pioneered by Descartes and Fermat Katz (1998), is the study of geometry using

algebraic methods. It includes describing geometric objects with equations, as we have already seen

Newton do with curves. Analytic geometry also involved the study of coordinate systems, although

not exactly as we know them today. Newton does not only use analytic geometry in the definition

of the object under investigation - he also uses some properties of the curve that follows from the

relationship given in the equation in his works. This will be pointed out in the praxeological analysis

below (cf. table 8.4)

Now we consider Newton’s use of universal arithmetics. The name of the category was actually

chosen inspired by the name of his text Universal Arithmetic, where he lays forth techniques for al-

gebraic manipulation. We chose to use this text as a reference to the arithmetic techniques in his

workplace even though it was published by William Whiston in 1707, thus years after the research

episode under consideration. It had been under preparation for around 20 years, so we presume it

reflects Newton’s arithmetic techniques around the time of On Analysis by Infinite Equations. The work

Universal Arithmetic starts out with simple techniques for summation and multiplication, for example:

Multiplication: Simple algebraic terms are multiplied by "drawing" numbers into num-

bers and variables into variables, and then setting the product positive if both factors be

positive or both negative, and negative otherwise"(Katz, 1998, 610)

Newton never actually justifies the multiplication rule presented here, or any other of the algorithms
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presented in the text for that matter. This gives the impression that neither he or his audience spec-

ulated much about a rigorous establishment of these techniques for algebraic manipulations(Katz,

1998, 610), and Newton made use of the universal arithmetics in his proofs as techniques without

need of justification.

We want to note that the work Universal Arithmetic also contains some content on analytic geome-

try. We decided to distinguish between arithmetics and analytic geometry because this workplace

analysis serves as a starting point for our teaching design, and we find that the distinction can be

useful in a teaching context for two reasons. Firstly, analytic geometry presents a clear contrast to

Greek geometry, whereas the arithmetic of the different time periods is more comparable. Secondly,

we assume that the simple algorithms in the arithmetics category are more accessible to the students.

Finally, we want to look at the methods Newton developed himself, which we considers as an inde-

pendent category of epistemic techniques. In particular, we want to examine how Newton employed

infinitesimals in his arguments. This is highly related to Newtons reasoning, since he justifies the

rules he established by infinitesimals. As previously mentioned, Newton defined curves using equa-

tions, describing fluent quantities as dependent on a constant rate of change over time. In line with

his view of change over time, he would define an "infinitely small" (or infinitesimal) period of time

as a moment, often denoted o. A fluent quantity x with fluxion ẋ it becomes x + ẋo after the moment

o has passed (Katz, 1998). In this way equations that describe the relationship between two fluent

quantities, x and y, will also describe the relationship between x + ẋo and y + ẏo, "and so x + ẋo and

y + ẏo may be substituted in place of the latter quantities, x and y, in the said equation" (quotation

from Newton, (Katz, 1998, 511)).

The rigour of Newtons method is debatable mainly because of his use of infinitesimalsKatz (1998),

however he himself did actually find his method to be valid, as he puts in when reflecting upon his

method:

to avoid the tedium of working out lengthy proofs by reductio ad absurdum, in the man-

ner of the ancient geometers. ...I preferred to make the proofs of what follows depend

on the ultimate sums and ratios of vanishing quantities [instead of the method of indi-

visibles]... For the same result is obtained by these as by the method of indivisibles, and

we shall be on safer ground using principles that have been proved (Newton in Pourciau

(2001)).

It has been discussed extensively over the years that Newton is dividing by zero. As late as 1959 Carl

Benjamin Boyer wrote:

The meanings of the terms ... ”prime and ultimate ratio” had not been clearly explained by

Newton, his answers being equivalent to tautologies ... Such an interpretation of Newton’s
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meaning, which of course results in the ... indeterminate ratio 0
0 , is not unjustified (Boyer

in Pourciau (2001)).

Regarding Rule 1 it is exactly the passage: "If we now suppose Bβ to be infinitely small, that is, o to be

zero, v and y will be equal and terms multiplied by o will vanish (...)"(Newton, 1969) where Newton

seem to be dividing by zero. This leaves us at an interesting crossroad - Newton himself did find

his method rigorous, however others raised questions about it. If we go back to Gila Hanna’s view

of what argumentation is, i.e. the techniques one are using to persuade others that ones reasoning

is valid, we find Newton was indeed persuasive. However in his reasoning for Rule 1 he makes use

of rules where the validity can be discussed, thus the validity of the conclusion can be discussed, cf.

Section 7.1.

In summary we identify three categories of epistemic techniques within Newtons workplace regard-

ing this research episode, which is: Analytic geometry, Universal arithmetic and the methods devel-

oped by Newton, e.g. equations described by fluents and fluxions.

8.3.2 Historical Praxeologies in Rule 1

Based on the three categories of epistemic techniques we idenitied above we identify three regional

MO’s with the theories Θan.ge for analytic geometry, Θun.ar for arithmetics, and finaly ΘNewt for prax-

eologies that draws on Newtons own developed infinitesimal methods.

We begin by giving a brief account for the constructions Newton made in the beginning of the proof

for Rule 1 and subsequently, we will examine praxeologies within each of the regional MO’s.

In Rule 1 Newton presents an algorithm for determining the area under a simple curve, Figure 8.3

shows an illustration of the curve that accompanies Rule 1. Rule 1 is phrased as follows:

To the base AB of some curve AD let the ordinate BD be perpendicular and let AB be

called x and BD y. Let again a, b, c, . . . be given quantities and m, n integers. Then

Rule 1. If axm/n = y, then will na
m+n x

m+n
n equal the area ABD.

Figure 8.3: Illustration of simple curve from Newton’s Rule 1(Newton, 1969, p. 206)
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After a presentation of Rule 1, Newton continues to present similar results on more advanced curves,

and provide examples of the applications of his algorithms. This shows that the main motivation of

the text is to provide a useful technique for determining areas under curves, rather than to justify their

validity. He even includes tables of computations that could assist the reader with interest in trying

to apply some of the techniques themselves. Only at the very end, Newton makes considerations on

the justification of his techniques: "As I look back, two points stand out above all others as needing

proof"**cite243**. The first point he is referring to in this quote is the proof of Rule 1, which is given in

two parts. First, Newton proofs the Rule for a specific (but arbitrarily chosen) simple curve, namely;

2
3

x
3
2 = z,

and second, he proof the rule in the general case.

The curve under investigation is illustrated in figure 8.4.

Figure 8.4: Illustration of curve considered in the proof of Rule 1(Newton, 1969, p. 242)

Newton renames different parts of the figure as follows:

Let then any curve ADδ have base AB = x, perpendicular ordinate BD = y and area

ABD = z, as before. Likewise take Bβ = o, BK = v and the rectangle BβHK(ov) equal to

the space BβδD. It is, therefore, Aβ = x + o and Aδβ = z + 0v.

By renaming the various components as described, Newton utilises Descartes’ symbolism (Katz, 1998,

438). The task of introducing the notation is implied in Newton’s phrasing and draws on Θan.ge

noting, however, that the use of the letter o actually draws on ΘNewt, but at this point in the text, is

not yet considered an infinitesimal increment. We also find praxeologies from the regional MO with

theory analytic geometry in the following passage:

Take at will 2
3 x

3
2 = z or 4

9 x3 = z2. Then, when x + o is substituted for x and z + ov for z,

there arises (by the nature of the curve)
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4
9
(x3 + 3x2o + 3xo2 + o3) = z2 + 2zov + o2v2

In the equality that concludes this passage, we identify two separate types of tasks. First, when

Newton refers to the nature of the curve, he is referring to the specific algebraic relationship established

between x and z. We identify a type of task of translating this relationship to the increments o and ov.

This type of task draws on Θan.ge. Second, we identify a task of expanding the equation. This task is

solved by a set of arithmetic techniques, justified by Θun.ar. Table 8.4 and 8.5 provides details of the

two praxeologies within two different theories. The implied conclusion that the expanded equation

still holds true is again justified by Θan.ge.

Type of Task Translate the relationship between x and z to x + o

and z + ov

Techniques Substitute x + o in place of x, and z + ov in place of

z.

Technology Discourse about the nature of curves described by

equations

Theory Analytic geometry

Table 8.4: Analytic Geometry Praxeology

In table 8.4, the discourse about the nature of the curve is rooted in the acceptance that there exists a

v and a δ that satisfy that the rectangle ov = BβδD.

Type of Task Expand the equation 4
9 (x + o)3 = (z + ov)2

Techniques Apply arithmetic algorithms to the left side and the

right side of the equation, respectively.

Technology Discourse about the distributive property of multi-

plication over addition and raising quantities to 2nd

and 3rd powers

Theory Universal arithmetics

Table 8.5: Universal Arithmetics Praxeology

In table 8.5, the set of techniques could be split into techniques for expanding the left side, and tech-

niques for expanding the right side. A possible technique for expanding the right side could be to

apply the rules for the square of a binomial, (a + b)2 = a2 + 2ab + b2. In this case, we get:

(z + ov)2 = z2 + 2zov + o2v2 (8.1)

by direct application, just as Newton does in the included passage. The arithemtics of the left hand

side are similar, though a bit more extensive and we will omit the details here.
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Newton continues to simplify the expression in equation 8.1. The relation 4
9 x3 =2 allows him to

remove equal terms, which results in o being a common factor in all terms. After dividing by o, "there

remains 4
9 (3x2 + 3xo + o2) = 2zv + ov2"***cite***, and from this expression Newton continues:

If we now suppose Bβ to be infinitely small, that is, o to be zero, v and y will be equal and

terms multiplied by o will vanish and there will consequently remain 4
9 × 3x2 = 2zv or

2
3 x2(= zy) = 2

3 x
3
2 y, that is, x

1
2 (= x2/x

3
2 ) = y.***cite***

Here we can identify a praxeology drawing on ΘNewt, which can be schematised as in table 8.6.

Type of Task Simplify equation with moments

Techniques Remove terms multiplied by o

Technology Discourse about moments, including an understand-

ing of "infinitely small" as to be 0.

Theory Newton’s infinitesimal method

Table 8.6: Universal Arithmetics Praxeology

We made the choice to phrase the type of task of the praxeology presented in table 8.6 as "Simplify

equation with moments", to reflect that the type of task in its essence resembles the universal arith-

metics of simplifying an equation. However, the introduction of moments is not justified with Θun.ar,

but with ΘNewt. When Newton finds that he can remove terms multiplied by o, it is because he ex-

plicitly considers "infinitely small" to be zero. One might now have issues with the comparison, if not

for the fact that prior to this, Newton simplified the equation by dividing all terms with o, which was

not problematic as o at that point was not considered as equal to zero, but Newton fails to justify that

the value of o can be considered in different ways at different places in the argument.

As in the workplace of Archimedes, we have found that Newton has developed praxeologies from

the three different regional MO’s we identified, and also here they reflect different levels of rigour.

However, while Archimedes was explicit about issues with his methods, Newton shows no remorse

in the use of infinitesimals in his argument for Rule 1, but explicitly states that it is in fact a proof.

When Newton speaks of limits, he does not have the same well-defined conception as has been de-

veloped today, and which we will discuss below. However, it seems that Newton did have enough

intuition about the concept to at least have convinced himself of the merits of his method.

8.4 Area Determination in Contemporary Mathematics

Now, we move on to contemporary scholarly knowledge on area determination, while still focusing

on rigour and reasoning. This is part of a loose praxeological reference model, which will guide the

design and a priori analysis of our teaching sequence.
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Before we delve into area determination, we remind the reader that we already discussed rigour and

reasoning in Section 7.1.

Simply put, the word area refers to the measurement of the space inside a two-dimensional shape.

As we are working with rigour and reasoning in relation to area determination we have chosen to

focus our study of area determination on a scholarly level on the Riemann integral. From the previ-

ous section it is evident that we can see the development of integral calculus in the 19th century in

connection to area determination of a parabolic segment in Ancient Greece and in connection to area

determination of simple curves in the 16th century analytic geometry. In modern mathematics the

Riemann integral is a common tool for determining the area under a curve, thus it is related to the

subject of area determination. In this chapter we will therefore study rigour and reasoning regarding

the Riemann integral on a scholarly level, i.e. how the argumentation is build and what makes this

rigorous according to modern mathematics.

The background literature for our study of scholarly knowledge is the book Indledende matematisk

analyse used in the first year course Analyse 0 at the University of Copenhagen.

When consulting the index of Indledende matematisk analyse in search for the word area,4 one is pointed

to one of the later chapters (chapter 9), which begins at page 351. This chapter concerns integrals of

two and three dimensions. However the formal definition of an area is first stated on page 359. This

indicates that on a scholarly level we do not have the privilege to just intuitively talk about an area if

we want to do it rigorously. Therefore we will start this section of kind of backwards and consult this

definition first in order to shed light on how much is needed to be established in order to talk about

an area at a scholarly level. Afterwards we will cover and establish basic definitions and theorems

that we need prior to this in order to close of with an discussion of the rigour and reasoning within

this field of mathematics on a scholarly level.

The formal definition of the area of a figure is stated in the textbook as:

Definition 1. The area of a figure A ⊂ R2 is given by

area(A) =

{
n

∑
i=1

area(Ri) | R1, . . . , R2 are essentially disjoint rectangles contained in A

}
(8.2)

First, we note that definition 1 is given without any references to integral calculus, even though this

has been accounted for in chapter 5 of the textbook. In fact, the connection of the area under a curve

and the Riemann integral is only made after the formal definition of the area of a figure - as an

example. This is stated as follows:

4DA: areal
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Example 2. Let f : [a, b] → R2 be continuous, and let f ≥ 0∀x ∈ [a, b]. Consider the region under the curve

given by

A =
{
(x, y) ∈ R2 | 0 ≤ y ≤ f (x)

}
(8.3)

Then A is a figure and

area(A) =
∫ b

a
f (x)dx (8.4)

Of course, the result in the example is expected, since considerations on determining the area under

the curve was what inspired the definition of the Riemann Integral in the first place (Eilers et al., 2018,

360).

In order to fully comprehend Definition 1 and the result in Example 2 on a scholarly level, a com-

prehensive understanding of the regional MO of real analysis is required. Before giving Definition 1,

formal definitions must be given of what a figure and a rectangle are, and what it means for the rect-

angles to be essentially disjoint. These definitions fall within the regional MO of real analysis, which

includes the necessary praxeologies for identifying and working with basic geometric shapes. One

must also be familiar with the formal definitions of curves and boundary points, which encompasses

praxeologies associated with understanding the properties of curves and the behaviour of boundary

points, which also falls within the scope of real analysis. Further, one must have an understanding of

basic set theory. The regional MO of real analysis builds on set theory, with praxeologies on opera-

tions with sets and set relations, which are associated with Definition 1 and Example 2.

To study rigour and reasoning, we need to consider the definition of an area, how the definition

relates to mathematical rigour and the reasoning behind this relation. The argument for the result

in Example 2 forms part of the technology associated with determining areas under a curve, and the

result provides techniques for solving types of tasks related to determining the area under a curve. A

formal proof of Example 2 is not given, but the result is still well argued, and the argument draws on

all the praxeologies we point to above, and more. This included praxeologies relating to the notion

of functions, limits and continuity, Riemann integrals, properties of R and more, all in the scope of

the regional MO of real analysis. In the following sections we will delve into how some of these prax-

eologies are established with a high level of rigour and formal argumentation. Regarding basic set

theory we loosely define a set as a collection of related objects. We view that basic set theory such as

complements, unions and intersections, as well as the use of logical quantifiers, have broad interpre-

tations, thus we consider this rigorous from the get go. For this reason we will not delve into detail

here, and it is assumed that the reader is familiar with these notions.

Regarding notions from Topology we assume that the reader is familiar with the definition of the

interior of A, denoted int(A), a contact point, and if all contact point are contained in A we say that A

is closed, boundary points and lastly a bounded set, which is either upward or downward bounded.
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8.4.1 Limits and continuity

In order to establish the definition of continuity we need to establish the notion of limits and in order

to establish the notion of limits we need to include the definition of a map as it is stated in Analyse 0.

A map is defined as:

Definition 3 (map). A map f is an operation between two sets X and Y, which associates exactly on y ∈ Y to

each x ∈ X. We refer to the set X as the domain of the map f , and to Y as the codomain, and write f : X → Y

For our purposes later on when we consider the Riemann integral, we define a real function to be a

map with codomain R. Until then we consider consider more general maps as defined in definition

3.

Limits

One of the most essentiel definitions in modern analysis - and a more recent addition - is that of a

limit point. Which is defined as:

Definition 4 (limit point). Let a set A ⊂ Rk, a map f : A → Rm and points a ∈ Ā \ A and b ∈ Rm be

given. We say that f has b as limit point as x approaches a, x ∈ A, if

∀ε > 0∃δ > 0 : ∥ f (x)− b∥ < ε for all x ∈ A with ∥x − a∥ < δ.

We write

f (x) → b for x → a, x ∈ A, or lim
x→a

= b

In modern mathematics, limits are typically introduced with an ε − δ-definition, as in definition 4.

With epsilon-delta arguments, mathematicians have established a solid foundation for mathematical

analysis. This methodology is an essential example of rigour in mathematical reasoning on a scholarly

level. For this reason, we will now present a few important limit theorems. Here, we also lay out

an example of a direct proof to showcase the standars of rigour and reasoning in a contemporary

mathematical argument.

Theorem 5 (uniqueness of limit points). Let a set A ⊂ Rk, a map f : A → Rm and points a ∈ Ā \ A and

b ∈ Rm be given. Then f has at most one limits point as x approaches a, x ∈ A.

In order to prove this theorem we need two central results. Thus, we permit ourselves to use the

following two results without proof:

Lemma 6. Let x ∈ Rk. Then it holds that

∀ε > 0 : ∥x∥ ≤ ε ⇒ x = 0 (8.5)

Theorem 7 (triangle inequality for vectors). Let x, y ∈ Rk. Then

∥x + y∥ ≤ ∥x∥+ ∥y∥
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Proof (Theorem 5). Assume f (x) → b′ and f (x) → b′′, for x → a, a ∈ A.

We want to show that b′ = b′′.

Let ε > 0 be given. It follows from definition 4, since b′, b′′ are limit points, ∃δ′, δ′′ such that∥∥ f (x)− b′
∥∥ ≤ ε

2
∀x ∈ A with ∥x − a∥ < δ′, (8.6)

and
∥∥ f (x)− b′′

∥∥ ≤ ε

2
∀x ∈ A with ∥x − a∥ < δ′′ (8.7)

Now, let δ = min{δ′, δ′′}. Since a is a point of contact for A, there exists x0 ∈ A such that x0 ∈ K(a, δ).

Now we have ∥x0 − a∥ < δ ≤ δ′, hence ∥ f (x0)− b′∥ ≤ ε
2 . Likewise, ∥ f (x0)− b′′∥ ≤ ε

2 . Thus,

applying Theorem 7, we have∥∥b′ − b′′
∥∥ =

∥∥b′ − f (x0) + f (x0)− b′′
∥∥

≤
∥∥b′ − f (x0)

∥∥+ ∥∥ f (x0)− b′′
∥∥

≤ ε

2
+

ε

2
= ε

Now, since ε was chosen arbitrarily, it follows from Lemma 6 that b′ − b′′ = 0, that is, b′ = b′′, which

is what we wanted to show.

The proof of theorem 5 is a good example of how an ε − δ-argument usually looks in a direct proof.

First, we establish some assumptions we want to make, including that an arbitraty ε has been given.

Then one lays out previously established knowledge and definitions. In this, case, definition 4 is use-

ful, because we have assumed that b and b′ are limit points, and we want to be able to say something

about them. In (8.6) and (8.7), the information we need from the definition is clarified. Then, we are

ready to define a δ which will always be smaller than any given ε.

The epsilon-delta argument builds on Newton’s methods, by formalising the concept of a limit. New-

ton’s infinitesimals were fundamental to the development of calculus. The epsilon-delta definition,

further developed by Cauchy and Weierstrass, provides a precise and rigorous way to describe limits,

drawing on Newton’s intuitive concepts of continuity and rates of changeKatz (1998). As such, we

can think of the contemporary notion of limits as Newton’s ideas in a more formalised setting.

Continuity

Often, the limit point of a function as x approaches some point a corresponds to the function value

f (a) (this is not always the case). When this is the case, we say that f is continuous. In the following,

we will formalize this intuition.

Definition 8 (pointwise continuity). Let some point a ∈ A, A ⊂ Rk be given. We say that a map f : A →
Rm is continuous in a if

∀ε > 0∃δ > 0 : ∥ f (x)− f (a)∥ < ε for all x ∈ A with ∥x − a∥ < δ
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In this case, we say that a is a point of continuity for f . If a is not a point of continuity, we say that a is a

point of discontinuity for f .

A map is continuous if it is continuous in all points of its domain:

Definition 9 (continuity). We say that a map f : A → Rm, A ⊂ Rk is continuous if it is continuous in

every point a ∈ A.

One might notice that the definitions and theorems above are considered in respect to the real num-

bers, however this is not a necessary condition for the validity of definitions and theorems. But as

stated in the Indledende matematisk analyse: "The main theorems about continuous functions, and with

them the entirety of differential and integral calculus, break down unless one takes the real num-

bers as the foundation."5, hence with the purpose of our study of scholarly knowledge in the present

thesis, there are some important properties of the real numbers, which we need to state in order to

consider integral calculus the Riemann integral. We will not delve into the construction of R here as

this is out of the scope of this thesis as well as not actually taught in the Analyse 0 course. Therefore

we will account for an important property, namely the least-upper-bound-property.

We start by introducing an important formal definition an upper bound:

Definition 10 (upper bound). Let A ⊂ R, A ̸= ∅.

A number b ∈ R is called an upper bound for A if a ≤ b for all a ∈ A.

Further, a number c ∈ R is called a east upper bound

Of course, if a subset of R has an upper bound at all, it has infinitely many. In ordered sets such as

R, we can talk about some upper bounds being greater or lesser than others. Which gives rise to the

definition of the least upper bound

Definition 11 (least upper bound). Let A ⊂ R, A ̸= ∅.

A number b ∈ R is called a least upper bound or supremum for A if b is an upper bound for A, and if any

upper bound c of A satisfies b ≤ c.

In fact, what distinguishes R from other number sets is the least-upper-bound property, which is:

Least-upper-bound Property: Let A ⊂ R be a non-empty, upwardly bounded set. Then a

least upper bound for A exists.

Similarly, for any subset of R, a greatest lower bound also exists - this is defined similarly as the least

upper bound and thus details will be omitted.

The least upper bound property is an fundamental property of R, and is essential, for instance, in

5DA: "hovedsætningerne om kontinuerte funktioner og med dem hele differential- og integralralregningen bryder sammen,

medmindre man lægger de reelle tal til grund" (Eilers et al., 2018, p. 72)
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demonstrating the Riemann integrability of any continuous function. Although the detailed proof

is beyond the scope of this thesis, its mention underscores the substantial effort required in rigorous

mathematical reasoning at a scholarly level.

8.4.2 Integral Calculus

We have now accounted for limits and continuity, as such we have put forth some of the foundational

definitions and theorems we need in order to consider integral calculus. Before we can establish the

Riemann integral, we need to establish some basic definitions, so that it is very clear what we mean

when speaking of notions such as partitions and Riemann sums.

In the following, we assume that [a, b] ⊂ R is a closed and bounded interval. A partition is defined as:

Definition 12 (partition). A finite sequence x0, . . . , xn satisfying

D : a = x0 < x1 < · · · < xn = b

is called a Partition D of [a, b].

We can consider the partition of [a, b] as n subintervals of [a, b]. A sequence of n intermediate points

ξ1, ..., ξn can be chosen such that ξi ∈ [xi−1, xi]. We say that a partition along with a choice of interme-

diate points ξ1, . . . , ξn is a tagged partition P(D, ξ). Further, we let ∆xi = xi − xi−1, the length of the

ith interval. Based on this definition of a partition, we can define the norm of the partition as:

Definition 13 (norm of partition). Let D be a partition [a, b], and let ∆xi = xi − xi−1, that is, the length of

each sub interval in the partition.

We define the norm of the partition as

norm(D) = max{∆xi | i = 1, . . . , n}.

For large norm(D), we say that the partition is coarse, and for small norm(D), we say that the partition is

fine.

Furthermore we define a Riemann sum:

Definition 14 (Riemann Sum). Let a function f : [a, b] → R be given, and let P(D, ξ) be a tagged partition

of [a, b]. We then define a Riemann Sum for f with respect to P(D, ξ) as the sum

M =
n

∑
i=1

f (ξi)∆xi

The Riemann Integral

At this point, we are ready to define the Riemann integral. The Riemann integral works well, es-

pecially on bounded functions on closed, bounded intervals. At this point, we briefly want to note
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that even though the motivation for the integral was to determine the area under a curve, we do not

actually address the definition of the area in the definition of the Riemann integral.

Definition 15 (Riemann integral). Let f be a real-valued function f : [a, b] → R. If there exists I ∈ R with

the property that for all ε > 0 there exits δ > 0 such that any partition of [a, b] with norm(D) < δ and any

choice of intermediate points, giving us a tagged partition P(D, ξ), the Riemann Sum M = ∑n
i=1 f (ξi)δxi

satisfies that ∣∣∣∣∣I − n

∑
i=1

f (ξiδxi)

∣∣∣∣∣ < ε,

we say that f is Riemann Integrable, and we say that I is the integral of f on [a, b], denoted as
∫ b

a f (x)dx.

Some theorems follow on applications of the Riemann integral. These are omitted here as the focus is

on rigour and reasoning rather than application and computation, but we note that the applicability

of Definition 15 is limited due to the fact that a value of I must be guessed or known. This conundrum

can be avoided with the Bolzano Property, which is also beyond the scope of this thesis.

Fundamental Theorem of Calculus

At this point, we have only discussed the definite Riemann integral. Now, we wish to briefly touch

upon the relationship between the definite integral and the anti-derivative because integrals are often

motivated and introduced by being the ’opposite’ of the anti-derivative. As we will see, the entire

subject of integral calculus is introduced through the Fundamental theorem of calculus in upper sec-

ondary school (cf. Section 9). We find it appropriate to include this theorem in a scholarly context,

because this is actually secondary to the establishment of integral calculus. This manner of intro-

ducing integral calculus has been highly transposed from scholarly knowledge to knowledge to be

taught. We only do a brief account because it would be out of the scope of this thesis to treat the

subject with great detail - as we are working with area determination in upper secondary school in a

way that it should not be related to differential calculus.

The fundamental theorem of calculus is stated as follows:

Theorem 16 (fundamental Theorem of Calculus). Let a function f : I → R be defined on some interval

I ⊂ R, and let x0 ∈ I be arbitrarily chosen.

If f is continuous on I, then the function defined by

Φ(x) =
∫ x

x0

f (y)dy for x ∈ I

is differentiable in every point x ∈ I with derivative Φ′(x) = f (x). In this case, we say that Φ(x) is the

antiderivative of f .

With Theorem 16, we have finally established the relationship between the definite integral and the

derivative.



Master thesis Nynne & Amanda Page 57/ –

In conclusion, we have seen that the standards of proofs and mathematical reasoning follow the

axiomatic-deductive method. We have found that area determination on a scholarly level is closely

related to the Riemann integral, and important theorems within integral calculus rely heavily on

properties of R which were only developed in recent times. The introduction of the integral was

initially independent of differential calculus, and is generally treated as such on a scholarly level. In

particular, the final point here made is in opposition to how integral calculus is introduced in upper

secondary school, as we will see in the next section.



Chapter 9

Knowledge to be Taught

Before we study the didactic transposition from scholarly knowledge, put forth in the previous chap-

ter, to knowledge to be taught, we will give an account of what the official curriculum for STX-A

level mathematics states should be taught regarding area determination, mathematical reasoning as

well as the history of mathematics. After this we will account for why reasoning and rigour should

be taught in upper secondary school mathematics according to our beliefs. We will then study the

didactic transposition based on two textbooks in use in upper secondary school, referring back to the

previous Section 8.4. We have chosen to base the study on the text book system that the test class used,

Plus STX A, and on another text book system Hvad er Matematik? in order to broaden the perspective

of the study.

9.1 Curriculum for STX A-level Mathematics in the Danish Upper

Secondary School

Henceforth, we refer to the official common objectives of upper secondary school STX A-level math-

ematics, 2017, as the curriculum (Da: læreplan). The curriculum states that students must work rea-

soning within mathematics.

The students should encounter mathematical theory continuously throughout the course

of high school course, and they should independently work with various elements of

mathematical reasoning1[p. 22](Børne- og Undervisningsministeriet, 2022).

Because of our definition of rigour in Section 7.1 we argue that the statement above has some annota-

tions to this term as it encourages students to work with mathematical reasoning. It is further noted in

the official curriculum that it is important to point out to students exactly when mathematical reason-

ing is in focus, and that "In this way, students can achieve such familiarity with mathematical thinking

that they will immediately distinguish between "what is known," "what is assumed," and "what one

1Da: "Eleverne skal møde den matematiske teori løbende gennem hele gymnasieforløbet, og de skal selvstændigt arbejde

med forskellige elementer af matematisk ræsonnement"

58
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wants to know" when problem-solving"2(Børne- og Undervisningsministeriet, 2022, p. 22). Thus gain

an understanding of the ’set of rules’ one ought to play by when performing a rigorous argument in

mathematics (cf. Section 7.1).

Area determination is mainly treated in relation to integral calculus, therefore we will account for this

subject. It is encouraged that integral calculus is introduced through the notion of the antiderivative,

and "one should draw upon students’ experiences from differential calculus and discuss the deter-

mination of antiderivatives as the reverse process of differentiation, so that students can initially find

reference in previously known material"3[p. 19](Børne- og Undervisningsministeriet, 2022). Based

on this statement in the official curriculum we should expect a strong transposition from scholarly

knowledge to knowledge to be taught, because as accounted for the Riemann integral is introduced

without reference to differential calculus on a scholarly level, cf. Section 8.4.2.

After the introduction to the anti-derivative, as well as associated rules, integral calculus is related to

area determination:

The relationship between area and antiderivative should be given special attention, and it

would be natural to consider this in conjunction with supplementary material on deduc-

tive methods and proof4(Børne- og Undervisningsministeriet, 2022, p. 19).

Regarding history of mathematics the official curriculum states:

Whenever possible, especially in cohesive teaching sequences, mathematical historical

sources should be included, encouraging investigative work that challenges and develops

students’ curiosity regarding the development, form, and use of mathematics5(Børne- og

Undervisningsministeriet, 2022, p. 23).

We see that using history to investigate form and use can be in line with an understanding of how

mathematics is produced, as is also stated in the official curriculum in relation to proofs and reason-

ing:

The students should gain knowledge that there is a difference between the way mathe-

matical topics are presented in books and the way the theory associated with the topic

2Da: "derved kan eleverne opnå en sådan fortrolighed med matematisk tankegang, at de i en problembehandling umiddel-

bart vil skelne mellem ”hvad man ved”, ”hvad man antager”, og ”hvad man ønsker at vide”
3Da: "man bør her trække på elevernes erfaringer fra differentialregningen og omtale bestemmelse af stamfunktioner som

den omvendte proces a differentatioon, så eleverne som udgangspunkt kan finde reference i allerede kendt stof"
4Da: "Sammenhængen mellem areal og stamfunktion skal gives en særlig behandling, og det vil være naturligt at tænke

dette sammen med det supplerende stof om deduktive metoder og bevisførelse"
5Da: "Der bør om muligt, specielt i sammenhængende forløb, indgå matematikhistoriske kilder, som lægger op til et un-

dersøgende arbejde, der udfordrer og udvikler elevernes nysgerrighed med henblik på matematikkens udvikling, form og

brug"
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originally emerged6(Børne- og Undervisningsministeriet, 2022, p. 22).

Here, the treatment of mathematical rigour and reasoning in the context of history of mathematics is

not suggested explicitly, but we see a great opportunity in doing so.

In conclusion students in upper secondary school with A-level mathematics should work with area

determination in the light of integral calculus, the history of mathematics and mathematical rigour

and reasoning.

9.2 Why Teach Reasoning and Rigour in Upper Secondary School?

From the previous section it is clear that the official curriculum states that the students should work

with reasoning within mathematics. As we accounted for in Section 7.1 we regard reasoning and

argumentation to be related to rigour, because mathematical argumentation is often associated with

a high level of rigour. Thus, even though rigour is not used explicitly in the official curriculum, we

find that students should acquire a certain level of rigour in their argumentation.

A practical reason why students need to learn about mathematical reasoning is that students are

expected to present a mathematical argument in the oral examination in upper secondary school. Of

course, this this reflects the incorporation of mathematical reasoning in the official curriculum. We

will briefly discuss the merits of this incorporation.

Since ancient Greece, and still today, the discovery of new mathematics has been communicated

through formal proofs. In the established didactic research, according to an entry in the Encyclopedia

of Mathematics Education, there is a division of opinions on the usefulness of encouraging students to

engage in more informal mathematical argumentation as a step to learning how a mathematical proof

is constructed (Hanna, 2020, p. 564). Gila Hanna put forth two different opinions on this matter:

Boero (in La lettre de la preuve 1999) and others see a great benefit in having students

engage in conjecturing and argumentation as they develop an understanding of mathe-

matical proof. Others take a quite different view, claiming that argumentation, because it

aims only to establish plausibility, can never be more than a distraction from the task of

teaching proof (e.g., Balacheff 1999; Duval – in La lettre de la preuve 1999 )(Hanna, 2020,

p. 564).

Even though there is an apparent division of opinions, there is a consensus that students should en-

gage in conducting mathematical proofs. We agree that it can be beneficial for students to engage in

formal as well as informal argumentation, and in this, investigate different levels of rigour in different

6Da: "Eleverne skal opnå viden om, at der er forskel på den måde, hvorpå matematiske emner fremstilles i bøger, og den

måde, hvorpå teorien hørende til emnet oprindeligt er fremkommet"
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types of arguments. This view is further supported in that, according to Hanna, most of the recent

studies showed how students can benefit from: "(...) argumentation’s openness of exploration and

flexible validation rules as a prelude to the stricter uses of rules and symbols essential in constructing

a mathematical proof" (Hanna, 2020, p. 564).

By placing students in an inquiry-reflective learning environment that makes use of SRP where they

study the argumentation of past mathematician in order to discuss the rigour pertaining these texts

we can create an environment that can strengthen students’ comprehension of proofs in mathemat-

ics, as this can function as a prelude to conduct mathematical proofs later on in their mathematics

education in upper secondary school.

9.3 Rigour and Reasoning According to the Textbooks in Use

In this section we investigate how Plus STX A and Hvad er Matematik? describe mathematical ar-

gumentation, reasoning and proofs. This is done to shed a light on how the notions of rigour and

reasoning is transposed into knowledge to be taught. In both text book systems, mathematical reason-

ing is addressed in independent chapters.

The first book of the Plus STX A-system, Plus A1, addresses this subject in chapter 8, hence quite

late in the book, almost as an after thought. The chapter begins with a brief historical background, to

motivate the subject:

Around 300 BC, the mathematician Euclid lived in ancient Greece. His work "Elements"

is an important foundation for modern mathematics. It is, among other things, based on

his work that mathematics is structured as a logical system of;

- definitions

- axioms

- theorems7

As such the chapter takes point of departure in ancient Greece, where the axiomatic-deductive method

of mathematics, which was developed, a method that is still common practice in modern mathemat-

ics. This is a common use of history in both textbooks used in our analysis.

The textbook "defines" definitions by their use; to "name and delineate new concepts."8 It uses Euclids

definition of a point as an example of a definition (i.e. "A point is that which has no part"9). As such,

7Da: "Ca. 300 f.Kr. levede matematikeren Euklid i det antikke Grækenland. Hans værk Elementerne er et vigtigt grundlag

for den moderne matematik. Det er bl.a. på baggrund af hans arbejde, at matematikken er opbygget som et logisk system af

definitioner, aksiomer, sætninger"(Madsen et al., 2024b)
8Da: "at sætte navn på og afgrænse nye begreber"(Madsen et al., 2024b)
9Da: "et punkt er det, der ikke kan deles"(Madsen et al., 2024b)
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definitions in upper secondary school is simplified in a way which we could view as a ’labelling’.

Furthermore, axioms are introduced as rules that are assumed to be true, i.e. a rule that we do not

need to prove in order to use them. The way of introducing axioms could lead to the apprehension

of them as being merely ’rules for calculation’.

Theorems are defined through their structure and purpose with the statement that: "Theorems build

upon definitions and axioms, and they provide us with new knowledge"10.

Thus, in the text book, mathematics is structured as the axiomatic-deductive system developed in

Ancient Greece, which is similar to the structure of mathematics on a scholarly level. We do, how-

ever, see a transposition of the historical content at stake. As accounted for in Section 8.1 Euclid (and

Aristotle) actually distinguishes between axioms and postulates, which seems to fall under one cate-

gory in upper secondary school. As such, it is evident that historical knowledge is simplified.

Further, Plus STX A1 states that "Mathematical theorems must be proved. That is to say, based on

axioms, definitions, and other theorems, we must be able to argue that the theorem is true."11. This

statement hints the importance of proofs in mathematics, and proofs are compared to valid argu-

ments. The validity of proofs is further elaborated by: "For a proof to be accepted as a valid mathe-

matical proof, it must be logically rigorous and cover all conceivable cases."12 This is in line with our

conception of a proof as a formal argument that follows the axiomatic-deductive method.

In Hvad er Matematik? C, we see a different approach concerning the placement of the subject in

the book. In this book there is also an independent chapter on this subject, but this time placed as

chapter 0 - a kind of prelude (Bruun et al., 2017). It points to an understanding of mathematical rea-

soning as a necessary prerequisite to be able to address the rest of the book, compared to Plus STX A1,

where the late appearance of the subject makes it seem more independent from the rest of the book

system. Of course, it is up to the teacher to decide the order in which the chapters are covered.

Regarding proofs and mathematical reasoning, it is stated that:

A mathematical statement that expresses that something always holds true - such as the

sum of angles in any triangle being 180o - is called a mathematical theorem in most countries.

In Denmark, it is called a matematisk sætning. [...] A mathematical proposition is always

associated with a mathematical proof of the proposition. A proof is one (or more) chains of

10Da: "Sætninger bygger videre på definitioner og aksiomer, og de giver os ny viden"(Madsen et al., 2024b)
11Da: "Matematiske sætninger skal bevises. Det vil sige, at vi med udgangspunkt i aksiomer, definitioner og andre sætninger

skal kunne argumentere for, at sætningen er sand"(Madsen et al., 2024b)
12Da: "Hvis et bevis skal kunne accepteres som et gyldigt matematisk bevis, skal det være logisk stringent og dække alle

tænkelige tilfælde"(Madsen et al., 2024b)
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arguments (reasonings), or series of rewrites of an expression, where we only use logical

rules throughout, leading us from something we already know to the new assertion.13

Here, the definition of a theorem and the constituents of a mathematical proof for the theorem, such as

logical rules and rewriting, are put forth in a slightly different manner. In this there is an inclusion of

arguments as being constituents of a proof, and arguments are equated with "ræsonnementer", which

is not easily translated to English, but is a countable form of the word ’reasoning’. In our conception

of the notions, we would probably say that a ’ræsonnement’ is a type of argument, e.g. a deductive

argument. Overall, the two books convey the same ideas and both are based on axiomatic-deductive

methods, but the terminology in Plus STX A1 is more in line with ours.

Chapter 8 of Plus STX A1 also introduces fives types of proofs: Proof by inspection (concerning fi-

nite sets), the pigeonhole principle, the direct proof, proof by contradiction, and proof by induction

(Madsen et al., 2024b). In relation to analysis, the direct proof is the most relevant one, as we have

also accounted for in Section 8.4. For this reason, we will put forth an example of a direct proof in the

textbook Plus STX A1 later on, in order to shed light on the rigour and reasoning in upper secondary

school.

9.4 Area Determination in Upper Secondary School

In this section, we aim to follow the progression from Section 8.4. We start by considering how the

notion of an area is treated in the text books used in upper secondary school. Afterwards we will

account for the notion of limits and continuity as treated in the Plus STX A-system. Henceforth, this

text book system will be our primary reference.

In Section 8.4 we assumed that the reader were familiar with notions from topology. These notions

are not treated in upper secondary school. We also assumed familiarity with basic set theory, which

is, in fact, a taught subject in upper secondary school, however highly transposed. As an example the

real numbers are defined in Plus STX A1 as follows:

Definition A (The real numbers). The real numbers consist of all numbers on the number line. They are

denoted by the letter R. We will use the notation R+ for the positive real numbers, i.e., all numbers greater than

0.14

13Da: "En matematisk påstand, der udtrykker, at et eller andet altid gælder - som fx at vinkelsummen i enhver trekant er 180o

- kaldes i de fleste lande for et matematisk teorem. I Danmark kaldes det en matematisk sætning. [...] En matematisk sætning er

altid knyttet sammen med et matematisk bevis for sætningen. Et bevis er en (eller flere) kæder af argumenter (ræsonnementer),

eller rækker af omskrivninger af et udtryk, hvor vi hele vejen kun anvender logiske regler, og som fører os fra noget, vi ved i

forvejen, til den nye påstand" (Bruun et al., 2017, p. 12)
14Da: "De reelle tal består af alle tal på tallinjen. De betegnes med bogstavet R. Vi vil bruge notationen R+ om de positive

reelle tal, dvs. alle tal større end 0"
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The treatment of real numbers in upper secondary school is very limited and restricted to an intu-

itive definition. On a scholarly knowledge, we argued that without properties of the real numbers,

in particular the least-upper-bound property, the foundation of integral calculus ’breaks down’. It is

evident that the scholarly knowledge has been transposed in such a way in definition A that there is

no real substance regarding the logos block. It is not clear from this definition how the real numbers

differ from the rational numbers, which are defined as all fractions of integers. This is reflected in

the way limits are introduced without fully justifying their existence (cf. Section 9.4.1). In regards to

integral calculus there is no assumptions of the real numbers in order to apply the theorems in the

text book.

When investigating how areas are treated in Plus STX A3, one is led to the definite integral, and part

2 of what the book calls the main theorem of integral calculus( Da: Integralregningens hovedsætning) -

a theorem for calculating the area under a function:

Theorem B (Main theorem of integral calculus, part 2). Let f be a non-negative and continuous function

in an interval [a; b], and let F be an arbitrary antiderivative of f in this interval.

The area of the region between the graph of f and the x-axis in the interval [a, b] is now given by:

Area = F(b)− F(a).15

Type of Task Calculate the area under a curve formed by a non-

negative continuous function f over a closed inter-

val [a, b]

Techniques Find the anti-derivative F, insert the endpoints of

the interval in F, calculate the difference F(b) −
F(a).

Technology The discourse regarding the use of anti-derivatives

to determine areas

Theory Calculus

Table 9.1: Praxeology of determining areas under curves

A common type of task that employs Theorem B is described in table 9.1. The theorem supports the

technology regarding the task, in that anti-derivatives can be used to determine the area, and also

provides a technique for determining the area, assuming the students knows the anti-derivative. In

order to employ the theorem, one needs to ensure the the function is non-negative and continuous

in the given interval and determine the anti-derivative F of the function f . Determining the anti-

derivative comes with its own set of techniques, depending on the function equation, which we will
15Da: "Lad f være en ikke-negativ og kontinuert funktion i et interval [a; b], og lad F være en vilkårlig stamfunktion til f i

dette interval. Arealet af punktmængden mellem grafen for f og x-aksen i intervallet [a, b] er nu givet ved: Areal = F(b)−
F(a)"(Madsen et al., 2024a)
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address later. In general, integral calculus and the anti-derivative is introduced in the text books in

relation to differential calculus, utilising the fact the F is anti-derivative if F′(x) = f (x), and differ-

ential calculus is introduced through the notion of limits. In this way, the technology in table 9.1 is

justified on a foundation of other technologies that need to be established.

9.4.1 Limits and Continuity

As the technology of the praxeology of determining areas is finding justification in the notion of

limits, we investigate how limits are introduced in upper secondary school.

After providing two thorough examples of limits of functions, the notion of a limit value is given in

Plus STX A2:

Definition C (limit value). A function f is said to have a limit a as x approaches x0 if f (x) can get as close

to a as we want, provided we choose x close enough to x0.

Symbolically, this is written as:

f (x) → a for x → x0 or lim
x→x0

f (x) = a

The existence of the limit is equivalent to the existence of the left and right limits, which are equal to each other:

lim
x→x0

f (x) = a ⇔ lim
x→x0−

f (x) = lim
x→x0+

f (x) = a16

The notation of limx→x0− f (x) and limx→x0+ f (x) has previously been established through one of the

examples, but it has not been given a formal definition, it has only been written as x "moving towards"

a certain value from left and right, respectively. In this way, the definition relies a lot on intuition.

We also find that definition 4 of a limit point is a transposed ε − δ-definiton, boiled down to "if f (x)

can get as close to a as we want, provided we choose x close enough to x0" in the didactic transpo-

sition. The definition also establishes the conditions under which the limit exists, by an equivalence

between the existence of the limit and the existence and equality of left and right limits. However, the

considerations of how to determine if the right and left limits exists are purely intuitive, and formal

proofs are omitted from the text book. As such the logos block regarding limits has been simplified

to an extend that the notion of limits are only introduced as an intuitive means to define continuity.

The notion if limits is used in Definition D of pointwise continuity:

Definition D (continuity in x0). A function f is continuous at some x0 from its domain if f (x) approaches

f (x0) as x approaches x0:

16Da: "En funktion f siges, at have en grænseværdi a for x gående mod x0, hvis f (x) kan komme så tæt på a, som vi ønsker,

bare vi vælger x tilstrækkelig tæt på x0.Symbolsk skrives så: f (x) → aforx → x0 eller limx→x0 f (x) = a. At grænseværdien

eksisterer, er ensbetydende med, at grænseværdierne fra venstre og højre eksisterer og er lig med hinanden: limx→x0 f (x) =

a ⇔ limx→x0− f (x) = limx→x0+ f (x) = a "(Madsen et al., 2024c)
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f (x) → f (x0) for x → x0 or lim
x→x0

f (x) = f (x0)

If x is replaced by x0 + h, we can write:

f (x0 + h) → f (x0) for h → 0 or lim
h→0

f (x0 + h) = f (x0)
17

This book does not have an explicit definition of when we say a function in its entirety is continuous,

it just notes after Definition D that: ’a function which is continuous in every point is considered a

continuous function’. In contrast to the Plus STX A system, Hvad er matematik? 2 actually provides a

formal ε-δ-definition of limits, a long with two more intuitive definitions written out in words. This

shows a lack of consensus in the two text book systems on whether the ε-δ-definition is relevant for

upper secondary school students. However, they both provide intuitive definitions of the concept,

and it is likely that many students will rely mostly on the intuition in the praxeologies they create

around limits.

9.4.2 Integral Calculus

The third book in the Plus A STX-system, Plus STX A3, begins with integral calculus and the first

chapter begins with the following introduction:

In differential calculus, we showed how the derivative function can be used to determine

the monotonicity of a function and to optimise solutions to mathematical problems. In

this chapter, we demonstrate how the reverse process, integral calculus, can be used to

determine areas in a remarkable way. 18

As we have seen in Section 8.4, the development of integral calculus is motivated as an answer by

questions regarding area determination on a scholarly level, and only after the fact it has become

clear that the integral and the anti-derivative is in fact related to the derivative.19 However, as we

see here, and as is also suggested by the official curriculum, integral calculus is introduced directly

as the opposite of differential calculus in upper secondary school. This in particular highlights how

the logos block concerning integral calculus is very different in upper secondary school from the

scholarly level. As a result, the first definition given in the chapter is that of the anti-derivative:

17Da: "En funktion f er kontinuert i et x0 fra definitionsmængden, hvis f (x) går mod f (x0) for x gående mod x0:

f (x) → f (x0) for x → x0 eller lim
x→x0

f (x) = f (x0)

Hvis x erstattes med x0 + h, kan man i stedet skrive:

f (x0 + h) → f (x0) for h → 0 eller lim
h→0

f (x0 + h) = f (x0)

"(Madsen et al., 2024c)
18Da: "I differentialregningen viste vi, hvordan den afledede funktion kan anvendes til at finde en funktions monotoni-

forhold og til at optimere løsninger til matematiske problemstillinger. I dette kapitel viser vi, hvordan den modsatte proces,

integralregningen, på forunderlig vis kan anvendes til at bestemme arealer."(Madsen et al., 2024a)
19Of course, this is implied in the choice of word ’anti-derivative’, but this is not as evident in Danish.
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Definition E. A function F is the anti-derivative of a function f , if F′(x) = f (x)20.

On a scholarly level, this was a very fundamental result, stated in Theorem 16, but in the didactic

transposition, this result has transposed into a definition.

Another definition, given shortly after, is that of the indefinite integral - that is, the indefinite in-

tegral is presented separately to the anti-derivative, though the two are in fact the same thing. It seems

the distinction is made in the book to introduce the notation of the integral. Henceforth, we will use

the term anti-derivative.

With the definition of the anti-derivative, we are ready to return to the main theorem of integral

calculus. In part 1, this theorem states that the relationship between the derivative of a non-zero con-

tinuous function defined on an interval, and the area underneath it. That brings us to Theorem B,

which we stated in the beginning of Section 9.4:

Theorem B (Main theorem of integral calculus, part 2). Let f be a non-negative and continuous func-

tion in an interval [a; b], and let F be an arbitrary anti-derivative of f in this interval.

The area of the region between the graph of f and the x-axis in the interval [a, b] is now given by:

Area = F(b)− F(a).21

Thus, in upper secondary school calculus, we can determine the area under a function with the notion

of anti-derivatives, and without even discussion the notion of the definite integral.

The definite integral, defined in terms of the anti-derivative, finally yields the conclusion that the area

can be found with the definite integral:

Definition F (Definite integral). Let f be a continuous function on an interval with an antiderivative F.

Furthermore, let a and b be two numbers in the interval. The definite integral of f from a to b is written as∫ b
a f (x), dx and is defined by

∫ b

a
f (x) dx = [F(x)]ba = F(b)− F(a)

a is called the lower limit of the integral and b the upper limit of the integral. 22

20Da: "En funktion F er stamfunktion til en funktion f , hvis F′(x) = f (x)" (Madsen et al., 2024a).
21Da: "Lad f være en ikke-negativ og kontinuert funktion i et interval [a; b], og lad F være en vilkårlig stamfunktion til f i

dette interval. Arealet af punktmængden mellem grafen for f og x-aksen i intervallet [a, b] er nu givet ved: Areal = F(b)−
F(a)"(Madsen et al., 2024a)

22Da: "Lad f være en kontinuert funktion i et interval med en stamfunktion F. Lad endvidere a og b være to tal i intervallet.

Det bestemte integral af f fra a til b skrives
∫ b

a f (x) dx og er defineret ved

∫ b

a
f (x) dx = [F(x)]ba = F(b)− F(a)

a kaldes integralets nedre grænse og b integralets øvre grænse."(Madsen et al., 2024a)
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This definition in is great contrast to the corresponding scholarly definition of the Riemann integral,

Definition 15, where the same mathematical objects
∫ b

a f (x) was introduced without any references to

differential calculus or the antiderivative. This shows how the associated logos block has transposed.

It is also evident from Definition F that there is an emphasis on associates techniques, since the rela-

tion
∫ b

a f (x) = F(b)− F(a) is included in the definition.

In order to investigate the rigour of mathematical arguments in relation to area determination in

the knowledge to be taught, we examine a direct proof given in the text book. First, we present how

the proof of Theorem B is given in the text book:

Proof (Theorem B) Given that A(x) is the area function, the sketched area has the area A(b). Thus, we

need to show that F(b)− F(a) = A(b). Since both F and A are antiderivatives of f, they differ by a

constant k:23

F(x) = A(x) + k

In this equation, substitute b and then a for x:

F(b) = A(b) + k

F(a) = A(a) + k

Now we obtain:

F(b)− F(a) = (A(b) + k)− (A(a) + k)

= A(b)− A(a)

= A(b)

where we in the last equality used that; A(a) = 0.

Thus the desired result is proved.24

The theorem draws on part 1 of the Main Theorem of Integral Calculus, which includes the area

function (cf. Theorem G).

23Da: "Idet A(x) er arealfunktionen, har det skitserede område arealet A(b). Vi skal altså vise, at F(b)− F(a) = A(b). Da både

F og A er stamfunktioner til f, er de ens på nær en konstant k(...)"(Madsen et al., 2024a)
24Da: "Idet A(x) er arealfunktionen, har det skitserede område arealet A(b). Vi skal altså vise, at F(b)− F(a) = A(b). Da

både F og A er stamfunktioner til f , er de ens på nær en konstant k: F(x) = A(x) + k I denne ligning indsættes b og derefter a

på x’s plads: F(b) = A(b) + k, F(a) = A(a) + k Nu fås: F(b)− F(a) = (A(b) + k)− (A(a) + k) = A(b)− A(a) = A(b) hvor vi

ved sidste lighedstegn benyttede, at A(a) = 0. Hermed er det ønskede bevist." (Madsen et al., 2024a)
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Theorem G. Let f be a non-negative and continuous function in the interval [a; b].

Furthermore, let the area function A be defined such that A(x) denotes the area of the region between the

x-axis and the graph of f over the interval [a; x], where x belongs to [a; b].

It now holds that:

A′(x) = f (x)

That is, A is an antiderivative of f .25

The structure of the proof is direct. Definitions are called and applied. In the statement "Since both F

and A are anti-derivatives of f , they differ by a constant k", the first part of the statement draws on

Theorem G, the second part draws on a previously stated theorem which is omitted here. The substi-

tution of x by b is not justified. It appears that students are expected to be able to justify deductions

from previously stated theorems, and be able to evaluate a function at a certain value. The rest of the

proof is done with basic algebraic manipulations. The proof never explicates the theory it draws on,

leaving it up to the student to either be well-versed in related theory, or trust the statements without

justification. Students who just "trust the process" will memorise the proof without any connection to

the related technology. We also note that the proof is dependant on the theory of differential calculus

being established, as this is used in the definition of the anti-derivative.

In conclusion, the main theorems covered on integral calculus has a similar content to the schol-

arly knowledge we accounted for in Section 8, but it is introduced almost in the backwards order of

the scholarly knowledge, as differential calculus is a convenient consequence of the Riemann Integral

on a scholarly (and historical) level, and a necessary prerequisite in the knowledge to be taught.

25Da: "Lad f være en ikke-negativ og kontinuert funktion i et interval [a; b]. Lad endvidere arealfunktionen, A, være fastlagt

ved, at A(x) angiver arealet af punktmængden mellem x-aksen og grafen for f i intervallet [a; x], hvor x tilhører [a; b]. Der

gælder nu: A′(x) = f (x). Dvs. A er en stamfunktion til f ." (Madsen et al., 2024a)
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Chapter 10

Introduction to part III

In this part we will first present the conditions for our teaching sequence, which includes the context

of the test class and the students’ expected prior knowledge. Then we will present the generating

question where we will discuss its possibilities and limitations in regards to answering our research

question. This leads to a presentation of our teaching design, before ending the chapter with an

a priori analysis of the design. The a priori analysis serves as the foundation for the a posteriori

analysis in part IV. Therefore this part and the following constitutes our research of RQ3 (How can

exposing students to a fluctuation between action history and observer history promote reflection on rigour and

reasoning in relation to area determination?)
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Chapter 11

Presentation of our Design and the

Generating Question

The overall learning objective for our teaching sequence is to create an inquiry-reflective learning

environment, that gives students an opportunity to reflect upon mathematical rigour and reason-

ing in the context of area determination. we want to investigate how this learning objective can

be met through an investigation of rigour and reasoning in two authentic mathematical papers by

Archimedes and Newton through a sequence of SRP’s. By implementing authentic mathematical

sources in the classroom, we aim to place students as observers of history, and enable them to use this

experience to orient themselves in a contemporary context, reflecting upon rigour and reasoning in

relation to integral calculus, thus confine in an action use of history.

11.1 Conditions for the Test of the Teaching Sequence

In this section we account for the context of the test class and their prior knowledge, in order to argue

that the curriculum accounted for in the Section 9 is relevant to the level of the class. In the process of

designing the teaching sequence we had already arranged where and when the teaching it should be

tested. In cooperation with the usual teacher of the class, we therefore had the opportunity to discuss

what subjects that needed to be covered prior to our teaching sequence, which we wish to elaborate

on in Section 11.1.2.

11.1.1 The Test Class

The teaching sequence was designed to be tested in a 2nd year STX class at XXX Gymnasium with

A-level mathematics as part of their study programme. At this gymnasium the duration of a lesson

is 70 min. Our teaching sequence consists of four lessons, hence we have a total of 280 min. Further-

more, the students were given an assignment set to be answered within the frame of two hours. This

assignment were scheduled to be handed in two weeks after the last lesson had been conducted. The
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assignment were an individual hand-in, however the students’ work in class during the four lessons

were in groups which their usual teacher had composed.

11.1.2 Prior Knowledge

We agreed with the usual teacher of the class that he would cover the curriculum on differential cal-

culus and parts of integral calculus prior to the implementation of our design, and that they would

put off proofs from integral calculus until after our implementation. This was due to the fact that

we were unsure at that point how big a role proofs of integral calculus would play in our design,

and wanted the opportunity to be the ones introducing them to the students. The condition to have

concluded differential calculus, including proofs, was due to two considerations; a) integral calculus

is introduced in upper secondary school as the ’opposite’ of differential calculus (cf. Section 9.1, and

b) we wanted the students to be familiar with proofs and rigour in analysis.

According to their teacher, the students had not been taught about rigour and reasoning in math-

ematics independently. However, the students had had practice conducting proofs. Further, the text

book follows an axiomatic-deductive method in its structure. Thus, we expect the students are fa-

miliar with mathematical reasoning and the structure of mathematical argumentation. This is an

essential part of the milieu the validation takes place against.

The students’ prior experience with area determination outside the subject of integral calculus is

limited to primary school, where we assume that the ’formulas’ of calculating the areas of circles,

triangles, squares and so on have been covered.

11.2 The Generating Question and the Process Choosing this

In the process of designing an inquiry-reflective learning environment with the use of SRP’s as a de-

sign tool, the generating question needs to be chosen carefully, such that it can foster an autonomous

inquiry in a oriented way. In our design we have chosen one guiding generating question from

which we pose two sub-questions that are almost identical in order to accommodate the two histori-

cal episodes.

In this section we wish to present our chosen generating question as well as the two sub-questions

and we will discuss the possibilities and limitations associated with these questions. Furthermore,

we will discuss the choice of including two generating questions and we will close of with an a priori

analysis of just one of these because the sequence of SRP’s are very similar.
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11.2.1 Considerations of Choosing the Generating Question

A good generating question is one that: "(...) should be strong enough to guide an exploration of a

knowledge domain. Students should understand the question but not be able to answer it, unless

they engage in a study and research process." (Jessen, 2017, p. 5) In this way it should be a question

which fosters students’ investigations which can lead to various SRP’s. We found choosing a question

that was broad enough to foster various explorations and narrow enough to accommodate our aim

with our teaching design challenging.

As stated in the introduction, the learning objective of our design was to create an inquiry-reflective

teaching environment, which could foster student-discussions about mathematical rigour and rea-

soning in the context of area determination. This led us to the question:

Q0: How would you determine the area under a curve, and how do you argue for your method?

This question seemed appropriate in consideration of our research question. However, we noticed

that it did not have a lot of possibilities regarding an autonomous exploration as the students were

already familiar with integral calculus, and we feared that an SRP generated from the first part of

the question would be quite limited if students quickly concluded that it could be answered with

integral calculus. Regarding the second part of the question, about how one would argue for the

chosen method, we found a great possibility for students to engage in an inquiry-reflective process,

exploring what it actually means to argue in mathematics, leading them to engage in a discussion of

reasoning and rigour. However, we were concerned that students would not be motivated to explore

this direction without further guidance.

In particular, three things stood out to us regarding Q0. First of all, the word rigour is not stated

explicitly in the question, but instead we use the word argue. This choice was made, because the

curriculum in Danish upper secondary school never in fact uses the word ’rigour’1, and as we have

discussed in Section 7.1, a clear definition of rigour is not so straight-forward. However, it is related

to argumentation and reasoning, and we see that one way to attack a question of how arguments are

made is through an exploration of mathematical rigour. By guiding students to work with argumen-

tation relating to the specific problem of area determination, rather than posing a broader question

(such as ’what does it mean to argue in mathematics?), we manage to narrow down the focus of the

teaching sequence. In order to make sure that students actually will engage in an SRP regarding

rigour, we will need to create a teaching design with sub-questions leading in the right direction.

Secondly, we need to reconsider the use of the word curve. From a historical point of view, this

phrasing stands out, as the definition of a curve we know from contemporary mathematics is dif-

ferent from the curve that was known to Archimedes and Newton. We are concerned that students
1altså, stringens
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will not see the curve as an epistemic object that has had a different meaning in different epistemic

configurations. For example, the way Archimedes considered a curve is not necessarily comparable

to how Newton considered it. If students are not aware that the meaning has changed over time, they

may rely on their own contemporary conception of a curve, and thus it might not be a motivating

factor for an autonomous historical inquiry.

Our third observation concerns the lack of historical dimension in the question. We found it chal-

lenging to compose one single question which relates to two different historical episodes while not

being too narrow and guided, which would lead to a too restricted inquiry process.

Based on these considerations we found regarding Q0, we decided to rephrase it into two generating

sub-questions and not pose Q0 explicitly.

11.2.2 The Generating Sub-Questions

The considerations in the previous section guided our choice of two generating sub-questions. In

order to avoid using the word ’curve’, the sub-questions relied on a visual representation of an area.

We decided on the following two generating sub-questions:

Q1: How would you determine the yellow area in figure 11.1, and how would you argue

for the method you have used?

Q2: How would you determine the blue area in figure 11.2, and how would you argue

for the method you have used?

The only difference between the two questions are the figures they refer to. This is chosen in order to

motivate an exploration of the sources in the compendium by Archimedes and Newton, respectively.

The figures resemble illustrations from the original works by Archimedes and Newton, which we

find motivational for the students to address the compendium in search for answers in the authentic

historical texts.

Q1 and Q2 also represent how the teaching sequence is divided into two parts, each with a different

historical focus, on the works of Archimedes and Newton, respectively. The historical dimension is

not achieved in the phrasing, but will be more teacher guiding through work with the compendium.

In the first encounter with the two figures, we expect the students will be unable determine the area

precisely with their prior knowledge. Therefore we see a potential to spark interest in regards to

investigating the historical sources, as this will enable them to actually determine the areas of these

figures.
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Figure 11.1: The first area shown Figure 11.2: The second area shown

11.2.3 A Priori Analysis of the Generating Question Q1

Before we present the design of the teaching sequence surrounding the chosen generating sub-questions,

we present an a priori analysis of Q1 without any limitations other than our own creativeness. As the

questions are quite similar we only include an a priori analysis of Q1 because the paths would be

somewhat similar apart from the point that when the students work with Newton, they also have

knowledge of Archimedes’ method. However they should quickly realise that this can not be used to

determine the area in figure 11.2.

The a priori analysis also sheds light on how the chosen sub-questions could not be answered prop-

erly without an historical investigation of Archimedes’ text (and Newton’s, with regards to Q2).

In order to read the diagram, we want to make a note on the notation. In order to support a reading

of the subscripts, questions derived from Q1 will be subscripted to the left with a 1, e.g. 1Q1 is the

first expected question derived from Q1, and likewise, questions derived from Q1 will be subscripted

as 2Q1, which will be relevant in the a priori analysis of our design. The notation will be elaborated

later on. We find two derived question from Q1 when our teaching material are not available, namely

1Q1 (Which methods can I use that I am already familiar with?) and 1Q5 (When have i argued enough for

my method and result?) (here, the numbering of the questions follow the numbering in our full SRP

diagram in Section 12)

This is due to the fact that not much information is given in the question, and thus the student does

not have many options but to search for answers regarding their prior knowledge. The SRP for Q1 is

represented in the diagram in figure 11.3 along with a list of the questions it represents.
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Figure 11.3: Questions derived from Q1

Q1 How would you determine the yellow area in figure 11.1, and how would you argue for

the method you have used?

1Q1 Which methods can I use that I am already familiar with?

1Q1.1 Can I use integral calculus to determine the area?

1Q1.1.1 Can I use the definite integral?

1Q1.1.1.1 Is it possible to determine the borders of the figure as functions?

1Q1.1.1.2 Can I view the figure as a space between functions?

1Q1.1.2 Can I use the indefinite integral?

1Q1.2 Can I partition the figure into figures that I can determine the area of?

1Q1.2.1 How can I use grid paper (i.e. squares)?

1Q1.2.2 Can I approximate the figure with triangles?

1Q1.2.3 Can I arrive at an exact area by counting?

1Q1.2.4 Can I use straightedge and compass construction to measure the area?

1Q1.3 How can I plot the figure with digital tools?

1Q5 When have I argued enough for my method and my result?

1Q5.1 What does it mean to argue for my method?

1Q5.2 What is an argument in mathematics?

1Q5.2.1 What are my assumptions?

1Q5.2.2 What is a theorem?

1Q5.2.3 What is a proof?

1Q5.3 What is mathematical rigour?

1Q5.3.1 When is an approximation good enough?
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1Q5.3.2 When is an empirical verification good enough?

At this point, we do not provide the possible answers to the derived questions, as we simply wish to

shed light on the possibilities inherent in our choice of generative sub-questions. An elaboration of

possible answers will be dealt with in the a priori analysis of the design in Section 12.

The path above is quite short and limited, however we see many possibilities when students are

informed that Archimedes had a way to determine the area precisely, and are guided towards the

treatment of Archimedes’ Proposition 1 in the compendium. This will open a new path of exploration,

namely the one tied to how Archimedes could determine the area, and in particular, how he argued

for his method. As the students are working in an unknown territory, we also see a motivation to ver-

ify that the method in fact works, and thus prompt a discussion of rigour and reasoning in relation to

Archimedes.

In conclusion, our chosen generating sub-questions do not immediately foster a large sequence of

SRP’s, but it is constructed in such a way that the students are not able to answer the question based

on the expected prior knowledge which motivates the investigation of Archimedes text. This con-

struction of a generating question is atypical, however, we regard it as beneficial for our purposes.

11.3 Overview of the Teaching Sequence

The intention of this section is to give an overview of the teaching sequence regarding the com-

pendium, the lesson plans and the assignment in order to support the reader in our a priori analysis.

The teaching sequence has two main objectives. The first one is to create a necessity for the students

to consult the historical sources in search of how they would determine the two areas and how they

would argue for their answer, which relates to an observation oriented use of history. The second one

is to orient themselves in their present, i.e. to bring the discussion of rigour and reasoning pertaining

Archimedes’ and Newton text into their present.

11.3.1 Lesson Plans

The first two lessons were focused on Archimedes and the last two around Newton. Therefore the

first lesson takes point of departure in question Q1, which is teacher posed and at the start of lesson

three question Q2 is teacher posed. In the lesson plans we have included a fair share of conferences,

in which the students are asked to share their thoughts and ideas throughout the process of investi-

gation. This is done to avoid students getting stuck, and to encourage students to ’steal’ ideas from

each other. The four lesson plans are presented in tables 1 to 4 in appendix A.
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11.3.2 The Compendium: Historical Expeditions

We have created the compendium based on our theoretical historical analysis of Archimedes’ and

Newtons text, carried out in Section 8.2 and 8.3. And it is constructed in such a way that it should

foster the students autonomous investigation from the perspectives of the past mathematicians and

minimise the teachers interference with the students inquiry.

The analysis guided us to collect the ’tools’ which is necessary to be familiar with in order to discuss

the reasoning and rigour in the historical sources. This collection can be regarded as the epistemic

techniques and epistemic objects in the different workplaces of Archimedes and Newton. One needs

to be familiar with these tools in order to discuss the reasoning and rigour in the historical sources

as observers. In the compendium, we included these tools in two tool boxes belonging to Archimedes

and Newton, respectively. For example, Archimedes is concerned with the parabola, and thus we

have accounted for how he understood a parabola, which is different from the students’ prior un-

derstanding. Newton on the other hand considers a curve, which we expect that the students relate

to the notion of a function - however, Newton did not have the notion of a function available in his

tool box, as it was not yet defined, which is pointed out in the compendium. In this way our analysis

supported the creation of the compendium.

Furthermore, as our analysis hinted the authentic historical sources can be difficult to read we chose

to include them in the compendium with comments guiding the students to read some of the diffi-

cult passages as well left out some passages which have been paraphrased in order to keep the text

coherent. The included passages is chosen based on the the analysis, which made it clear what parts

could foster a discussion of rigour and reasoning which is fit to the students’ level.

We have also included perspectives from other people, who wrote about the works of Archimedes

and Newton (e.g. Klines statement from 1953 regarding Newtons limit concept: "[Newton] ... suc-

ceeded in doing [nothing] more with the limit concept than confusing himself..."), as well as a sub-

stantial amount of historical context in order to emphasise that Archimedes and Newton did not

only shape the history but were also shaped by history, hence foster an inquiry of the mathematics

of the past from the perspective of the past mathematicians, by which we seek to take on a multiple

perspective approach to history of mathematics (see Section 2.1).

11.3.3 The Assignment

We have made the assignment in such a way that a student who have attended the four lessons should

be able to complete it without the need for any knowledge which have not been available at class or

in the compendium. In this way we constructed the questions in the assignment with the intend for

it to function as a reflection paper on the teaching sequence.



Chapter 12

A Priori Analysis of our Design

In this section we will make an a priori analysis of our design, in which we will present possible

answers to selected questions and connect them to our account of knowledge to be taught (cf. Sec-

tion 9). The questions are chosen based on that they are likely to be posed, and/or because we want

to demonstrate how potential answers may contribute to the learning goals. For the latter case, the

presentation of answers serve as an argument for some of the questions to be included in the lesson

plan as teacher posed questions.

The two generating sub-questions that lays the foundation for the teaching sequence are presented in

Section 11.2.2. As the first two lessons were centred around Q1 and the second to around Q2 we will

present the first two lessons together, and the second two lessons together in the next section.

12.1 The Five Main Derived Questions

Overall, we expect five questions to arise from Q1 and Q2. Some of the five questions are expected to

arise from both Q1 and Q2, and some are only expected in relation to one of them.

In the following, we expand the notation introduced in Section 11.2.3. As already established, the left

side index refers to whether the question is derived from Q1 or Q2. Questions that are expected to be

derived from both Q1 and Q2 are subscripted to the left with a 0 here, and in cases when we discuss

them in relation to the specific cases of Q1 or Q2, we will subscript them accordingly. In this way,

0Q1, 1Q1, and 2Q1 are all the same question. This is done because even though the phrasing of the

questions are the same, the expected answers and derived questions are dependant on the context.

Further, possible answers are noted with an A and the same indexing as the questions, e.g. possible

answers to 1Q1.1 are noted 1 A1.1.

The five main derived questions we expect are presented below and are numerated to the left as

to give an overview of how they relate to the two generating questions.
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0Q1: Which methods can I use that I am already familiar with?

1Q2: How did Archimedes determine the area, and how did he argue for it?

2Q3: How did Newton determine the area, and how did he argue for it?

2Q4: What could Newton do with his method that Archimedes could not?

1Q5: When have I argued enough for my method and my result?

Question 0Q1 draws on the students’ prior knowledge regarding area determination. 1Q2, 2Q3 and

2Q4 only arise through the students’ work with the compendium, thus are related to a observation

use of history. 1Q5 will be posed continuously throughout the whole teaching sequence. This is done

in order to create an explicit relation between the historical sources and the modern methods that the

students are taught in upper secondary school. In this way we foster an action use of history, as the

students are encouraged to orient themselves in their contemporary context.

12.2 Lesson 1 and 2: Archimedes’ Workplace

In the beginning of lesson 1, Q1 is posed without any introduction to the compendium. We remind

the reader that Q1 is:

Q1: How would you determine the yellow area in figure 11.1, and how would you argue

for the method you have used?1

Since this question will be posed prior to distributing the compendium, we do not expect any changes

from the expected SRP already presented in Section 11.2.3.

1 A1.1. Can I use the definite integral?

We expect that the students will be challenged by the lack of information in the figure, there is no

numerical values, functions nor coordinates. Since the students are familiar with integral calculus,

we expect 1Q1.1 to be posed quickly because this is a common tool used in upper secondary for deter-

mining area. This will prompt students to consider the assumptions required if one were to use the

definite integral and we expect them to conclude that they can not use this tool as they do not have

any of the required information.

1 A1.1.2 Can I view the figure as a space between functions?

We expect students to investigate possible function equations to represent the figure. Hence we ex-

pect 1Q1.1.2 to be student posed. We expect a possible answer 1 A1.1.2 to be that it is not possible to

determine the equation of the functions as they do not have any coordinates from which they could

1The question was posed in danish: Hvordan ville I bestemme arealet af det farvede område, og hvordan argumenterer I for jeres

metode?
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determine a function.

The two questions above sets the stage for a debate about how the tools they have today haven’t

always existed and how the coordinate system is not a given entity.

1 A1.2.1 How can I use grid paper (i.e. squares)?

A common method taught in primary school is to use grid paper to count the squares of a figure in

order to determine the area. Therefore we expect that some students consider this method and reach

the conclusion that this can only lead them to an approximation of the area.

In conference 1.1, the students present their answers to the posed question, which will foster a dis-

cussion of what assumptions one need to know in order to use theorems in mathematics and reach a

valid conclusion. After this discussion, the compendium is provided to the students. Archimedes is

briefly introduced, and the students are informed that he in fact could determine this area. Therefore

1Q2 (How did Archimedes determine the area, and how did he argue for it?) is teacher posed. Through

working with the compendium, we expect the following questions to be derived from 1Q2.

1Q2 How did Archimedes determine the area, and how did he argue for it?

1Q2.1 Which methods does Archimedes use in the demonstration of Proposition 1?

1Q2.1.1 Which method does Archimedes refer to in the text?

1Q2.1.1.1 What is the law of the lever?

1Q2.1.1.1.1 What advantages are there to using the law of the lever?

1Q2.1.1.1.2 What are the disadvantages of using the law of the lever?

1Q2.1.1.1.3 Why did Archimedes find it meaningful to use the law of the lever?

1Q2.1.1.1.4 Why can’t the law of the lever be included in proofs, according to Archimedes?

1Q2.1.1.1.5 When can the law of the lever be used?

1Q2.1.1.1.6 Are we familiar with the principle of equilibrium from elsewhere?

1Q2.2 When did Archimedes believe something to be proved?

1Q2.2.1 What is a mechanical method?

1Q2.2.1.1 What was the attitude towards mechanical arguments at the time?

1Q2.2.2 Why did Archimedes believe that a proof was only valid if it was geometric?

1Q2.2.2.1 What does it mean to demonstrate something by geometry

1Q2.2.3 What did Archimedes think of his demonstration in Proposition 1?

1Q2.2.3.1 Why does Archimedes state that the result was only indicated?

1Q2.2.3.1.1 Can a two-dimensional figure be made up of one-dimensional lines?

1Q2.2.3.1.1.1 What is the definition of a line?

1Q2.3 When can I use Archimedes’ method?

1Q2.3.1 Can I use Archimedes’ method if I want to determine the area under a function?
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1Q2.3.1.2 If so, does it work to determine the area under any function?

1Q2.3.2 Is the law of the lever still used to discover new mathematics today?

1Q2.3.2.1 Why/why not?

1Q2.4 Where did Archimedes acquire his knowledge from?

1Q2.4.1 How did Archimedes access mathematics that had already been discovered?

1Q2.4.2 Which prominent mathematicians preceded Archimedes?

1Q2.4.3 In what ways were mathematics different for Archimedes compared to contempo-

rary mathematics?

1Q2.4.3.1 Did Archimedes understand mathematical objects in the same way as we do today?

1Q2.4.3.2 Was Archimedes familiar with the coordinate system?

1Q2.4.3.3 Was Archimedes familiar with the notion of functions?

In conference 1.2, a plenum discussion of the groups’ initial encounter with the text is initiated and

1Q2.2 (When did Archimedes believe something to be proved?) is teacher posed if students have not posed

it themselves because this is an important question to treat for our learning goal. We see a possibil-

ity that the students will pose this question themselves, as Archimedes addresses this matter in the

preface of the text, and when the students investigate the compendium, this is the first text they will

encounter of Archimedes’ own writings. We expect the students to be able to identify that Archimedes

refers to a mechanical method and a geometrical method, which we expect will lead to the students

posing 1Q2.2.1 (what is a mechanical method) and 1Q2.2.2.1 (what does it mean to demonstrate something by

geometry?). In this way they get ’in touch’ with two of the three historical praxeologies we identified

in Section ??. Since answers 1 A2.2.1 and 1 A2.2.2.1 both feed into the answer of 1Q2.2, they are included

below in a possible answer 1 A2.2

1 A2.2 When did Archimedes believe something to be proved?

If we assume that the students only consult the preface of Proposition 1 in the compendium, we expect

them to be able to give an answer such as: "Archimedes believed that something was only proved, if

it was shown with geometry, rather then mechanical methods", because Archimedes wrote: "for cer-

tain things first became clear to me by a mechanical method, although they had to be demonstrated by geometry

afterwards because their investigation by the said method did not furnish an actual demonstration". However,

this answer is also based on the assumption that the students think of "an actual demonstration" as a

proof in mathematics. They may be satisfied and not seek a more elaborated answer, or they may go

a little further to gain insight into what that in fact means.

The meaning of mechanics and geometry is not elaborated in the compendium, but we expect that

students, based on their prior knowledge, have a conception of geometry as something related to

shapes and figures, and mechanics as something more real-world oriented, and thus will be able to

distinguish the concepts to some extend. Using a search engine, students may find a definition of



Master thesis Nynne & Amanda Page 84/ –

’mechanics’ such as "a path of physics, deals with the motion or rest of bodies2", and ’geometry’ as

an "area within mathematics, originally dealing with the description and measurement of shapes3. If

students gain this insight, a more elaborated answer is available, providing details of the distinction

between mathematical geometric methods as an idealisation of the real world, where mechanics con-

cern the world as it actually is, and is thus less idealised. The insight into this distinction will give

rise to a more nuanced answer, concerning why Archimedes distinguished between the two methods,

and why he thought that mechanics could not provide an actual proof.

Conference 1.3 yields a plenum discussion of the students’ answers 1 A2.2. Here, the focus is shifted

from the past to the present, in order to lead them from an observation usage of history to an ac-

tion usage. Here, we intend for the students to make some considerations of their own conception

of rigour and reasoning in contemporary mathematics, hence relating to 1Q5 (What is your own con-

ception of rigour and reasoning in contemporary mathematics?). As the students have now worked with

the distinction between two methods, i.e. mechanical and geometric, they should be able to reflect

upon whether they have used or is able to use either of these methods in a proof today. Based on our

content analysis we expect that they are able to state that a geometrical method can still be used.

From 1Q5 we expect the following derived questions:

1Q5 When have I argued enough for my method and my result?

1Q5.1 What does it mean for something to be rigorous?

1Q5.1.1 How does rigour relate to intuition?

1Q5.1.2 Is it important to be rigorous in mathematics? (And why?)

1Q5.1.3 What role does examples and special cases play in relation to rigour?

1Q5.2 What is a mathematical proof?

1Q5.2.1 Which methods do I use today when proving a mathematical theorem

1Q5.2.2 When would I say that something has been proved?

1Q5.3 What is mathematical reasoning?

1Q5.3.1 What significance does mathematical language have for mathematical reasoning?

We find 1Q5.2.2 (When would you say that something has been proved?)4 to be a crucial question regard-

ing the learning goal of strengthening the students comprehension of proofs in mathematics, and to

make the connection to the present even clearer. Thus, the question is included in the lesson plan as

a teacher posed question.

1 A5.2.2 When would you say that something has been proved?
2Mekanik, gren af fysikken, som behandler legemers bevægelse eller hvile, https://denstoredanske.lex.dk/mekanik
3"[...] område inden for matematikken, som oprindelig omhandler beskrivelse og måling af figurer." https://

denstoredanske.lex.dk/geometri
4Phrased in the lesson as: "Hvad mener I? Hvornår er noget bevist?"

https://denstoredanske.lex.dk/mekanik
https://denstoredanske.lex.dk/geometri
https://denstoredanske.lex.dk/geometri
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We have identified four types of distinct answers that we expect are some guiding categories for the

students answer, namely that the student conception of when something is proved is:

1. based on understanding of standards

2. based on convictions

3. relying on authority

4. based on formality

We regard the first and fourth to be tied to a strong comprehension of proofs in mathematics, and the

second and third to a weak comprehension.

We regard the first comprehension likely to occur, as theorems are introduced as something that

should be proved based on axioms, definitions and other theorems, cf. Section 9.3. Therefore we

expect some students to be able to identify these as standard within a proof.

For the second type, we expect that some students might think that something has been proved

merely because they feel confident that the fact stated is true. In this case, the conception of a proof is

based on intuition and/or previous experience.

The third type of conception of proofs is authority based. This arises when a student equates ’proof’

with authority, i.e. a statement by a teacher (or textbook provided by a teacher), and accepts some-

thing as true because this authority has asserted it. This weak comprehension of when something

has been proved can occur if students have experienced that the theorems and proofs which they

encounter during their education are always valid, and thus they see no reason to doubt them. As we

do not expect students to have encountered invalid statements in their mathematics, we expect some

students will rely on their teacher regarding validity.

Lastly, regarding the fourth type, some students may in fact view something as proved when it has

been demonstrated with logical deductive principles, however we do not expect students to be able

to point to which principles we categorise as such, thus they are not expected to have a strong dis-

course about this. This is the conception we would expect from scholars, and thus we find it unlikely

to appear among upper secondary school students, and if so, only from the more advanced students.

As we have seen in Section 9, students have not been introduced to mathematical formalism on a

scholarly level, which is why this is unlikely.

Conference 1.4 concludes lesson 1. This is a plenum discussion of the students’ personal comprehen-

sion of proofs, and is continued in the beginning of lesson 2, where the students (after a brief recap)

are asked what methods they use when proving a mathematical theorem, thus lesson two takes point

of departure in 1Q5.2.1 (Which methods do I use today when proving a mathematical theorem?) in order to

promote a reflection of the things that constitutes a proof. Students who provided answers 1 A5.2.2

of type 1 (and 4, for that matter) might already have made considerations of this as these types are
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closely tied to the theory of what we are able to use when proving things in mathematics. Students

who provided answers of type 2 or 3 may be forced to reassess their conception when working on

this question. By this we ’force’ students who have a weak understanding of proofs to work explicitly

on what makes a proof valid. We expect the students to be able to give the following answer to 1Q5.2.1:

1 A5.2.1 Which methods do I use today when proving a mathematical theorem?

In order to answer this question some students might restrict themselves to consult their prior knowl-

edge. If this is the case we expect advanced students to answer this question by listing types of proofs,

e.g. direct proofs, proofs by contraposition or proofs by induction, as these are the types listet in thier

text books, cf. Section 9.3. On the other hand, if students are not able to identify different types of

proofs, they may instead list tools often used in proofs, such as algebraic manipulations or illustra-

tions, and some may even have the misunderstanding that a theorem can be proved by example, or

even using digital tools.

We also see a possibility that some students will consult their prior knowledge in light of their new

knowledge from lesson 1 regarding what Archimedes thought of as methods used in proofs. If this is

the case we expect that the students are able to elaborate on geometrical methods.

After a brief plenum discussion of 1 A5.2.1 we make a switch back again to Archimedes, by posing

1Q2.1 (Which methods does Archimedes use in the demonstration of Proposition 1?). This switch is made in

order to guide students back to conforming to observer history. In the following Conference 2.1, after

the groups have shared their findings, the teacher will initiate a discussion of the contrast between

geometric and mechanical methods, as this is an important part of Archimedes text regarding the

discussion of rigour and reasoning (cf. Section ??). This has already been discussed in the previous

lesson in relation to the preface, but we expect that the actual use in Archimedes text will make the

distinction more clear. In particular, we expect that the emphasis on mechanical methods in relation

to the demonstration of Proposition 1 will prompt students to pose 1Q2.1.1.1 (What is the law of the lever?),

and if not, it will be teacher posed.

1 A2.1.1.1 What is the law of the lever?

We expect students to consult the material in the compendium regarding the law of the lever, where

a link to a visual representation is included. We also expect students to draw on their own experience

e.g. from a seesaw or similar, which leads to an intuitive understanding, because the law of the lever

has been connected to the mechanical method in the previous lesson. Thus, by now, it should be clear

that this method can be connected to a physical conception, and is highly real-world related. This

answer can support (and is supported by) the students’ understanding of the distinction between

geometry and mechanics - in fact, we expect it is possible to have a strong intuition about the law of

the lever without consulting mathematics at all.

In extension, we don’t expect the answer to be provided in rigorous mathematical terms, which aligns
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well with our focus being more on rigour and reasoning than on the conducting of mathematical ma-

nipulations. Examples of expected answers are along the lines of "something you use to investigate

the relationship between two entities" or "weighing stuff".

With this first encounter with the law of the lever, we do not have any expectation that the students

will point out precise problems with using the law of the lever in a mathematical demonstration.

However we see an opportunity that they will find it somewhat problematic, as it is a mechanical

method, which by lesson 1, is not regarded to furnish an mathematical demonstration according to

Archimedes.

In Conference 2.2, students share their understanding of the law of the lever with the class, followed

by an institutionalisation of the concept by the teacher. Which leads to question 1Q2.1.1.1.2 (What are

the disadvantages of using the law of the lever?)5 to be teacher posed.

1 A2.1.1.1.2: What are the disadvantages of using the law of the lever?

We do not expect students to find many issues with the law of the lever initially. We expect them to

merely state that it is a disadvantage to use the law of the lever because it is a mechanical method.

Therefore the teacher will quickly guide students to investigate how a line was defined (in the his-

torical context). The compendium contains a few line-related definitions, e.g. "A line is breadthless

length6". Based on this investigation we expect students to be able to conclude that lines have no

breadth, and thus no weight, which makes it complicated to weigh them on a lever. If students do

not come to this conclusion themselves, the teacher will guide them by posing questions related to

lines, e.g. "how would you weigh a line?" or "what dimension is a line?". In this way we expect the

students to be able to argue that there are issues with the law of the lever, when a mechanical method

is employed in a geometrical setting.

In conference 2.3, the groups’ answers are discussed in plenum to ensure that all students have

worked with the passage in which Archimedes may have considered his demonstration as non-

rigorous. This will initiate a discussion of indivisibles. The teacher makes sure that the notion of

indivisibles is included, if it is not brought to attention by the students. To foster a discussion of

the question, students are asked to consider a quote from Democritus included in the compendium,

where the notion of indivisibles is criticised.

1 A2.2.3.1.1: Can a two-dimensional figure be made up of one-dimensional lines?

We expect the students to read the statement of Democritus in the compendium (cf. Appendix C)

by which we expect the them to be able to connect the conic section Democritus is treating to the

parabolic segment, which Archimedes is investigating. We expect them to arrive at something like

5Posed as: "Hvilke problemer kan der være med at bruge vægtstangsprincippet?"
6Included in Danish: En linie er en længde uden en bredde
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the parabolic segment would not have a smooth surface if we regard it as being made up from indi-

visibles. As indivisibles are a difficult entity the compendium also includes a brief description of the

notion, in which we have written:

Disse skiver har ikke nogen højde, og er således to-dimensionelle, mens selve keglen er

tre-dimensionel. I eksemplet her er det skiverne, vi kalder de indivisible, men på samme

måde kunne man forestille sig, at en flad to-dimensionel figur består af en-dimensionelle

linjer, der ikke har nogen bredde.

This enables the students to connect the indivisibles with a shift in dimension, as dimensions are a

taught subject in upper secondary school. And this is not meaningful in Archimedes argument.

Since the concept of indivisible is highly abstract, we only expect students to get the slightest under-

standing. For the aim of our teaching sequence, it is in fact not important that students understand

the notion of indivisibles completely, but rather that they gain insight into the fact that the establish-

ment of rigorous mathematics is complicated, and has been discussed for thousands of years. And if

an argument makes use of a tool of which the validity is up for discussion, e.g. indivisibles, we can

criticise the the state of rigour in the entire argument.

After the conclusion of lesson 1 and 2 we expect students to have formed some answers in rela-

tion to the rigour of Archimedes method, as well as how his argument is composed. In relation to

these formed answers, we expect that they will have started reflecting on the rigour and reasoning of

contemporary mathematics due to the teacher posed question regarding the students own compre-

hension of proofs (1Q5.2.2 and 1Q5.2.1).

12.3 Lesson 3 and 4: Newtons Workplace

The historical focus in lesson 3 and 4 is shifted from Archimedes to Newton. Therefore lesson 3 begins

with a brief recap of the previous lessons, where the distinction between the mechanical method and

geometrical methods is emphasised along with how we can discuss the rigour pertaining Archimedes

demonstration, even though his result in fact is valid. Afterwards the students’ investigation of New-

tons ’workplace’ will be motivated with the teacher posed Q2:

Q2: How would you determine the in blue area figure 11.2, and how would you argue for

the method you have used?

The students are asked to discuss Q2 in their assigned groups. When Q1 were posed in lesson 1, we

mainly expected 1Q1 and its derived questions to be posed, cf. Section 12.2. The phrasing of Q2 i

slightly different - as it is now the blue area in figure 11.2 that are under investigation. However 1Q1

is in fact the same question as 2Q1, but we have changed the left hand indexing to underline that now

we are looking at 0Q1 as derived from Q2. This is because we expect the derived questions to unfold a
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bit differently, since students have already gained some new insight into area determination through

their work with Archimedes, and some are expected to employ Archimedes result. In extension of

this, we want to make a note that the right hand indexing is kept intact if the phrasing of the question

has not changed.

We expected students to reject the option of using integral calculus when we posed Q1 in the first

lesson, because it is not possible from a picture to determine accurate functions. Thus, we do not

expect 2Q1.1 (and all its sub-questions) to be derived from Q2. If it is posed we expect the students

to quickly state that they can’t use this tool, based on their work with Q1. We do however see the

possibility that all other sub-questions of Q1 can be derived from Q2 to some extend. In addition,

we suspect that the students work with Archimedes may lead to more possible sub-questions, as

presented below.

2Q1 Which methods can I use that I am already familiar with?

2Q1.5 Can I use Archimedes method to determine the area?

2Q1.5.1 How is the blue figure different from the figure in Proposition 1?

2Q1.5.1.1 Is the figure a segment of a parabola?

2Q1.5.1.2 Can I inscribe a triangle in the figure as described in Proposition 1?

2Q1.6 Can I use the law of the lever to determine the area?

2 A1.5: Can I use Archimedes method to determine the area?

We expect that some students will try to use Archimedes’ method to determine the area. In order to

do so, we expect that they will have to compare the blue figure to the figure in Proposition 1 (2Q1.5.1)

in order to try and inscribe a triangle (2Q1.5.1.2), which is a necessity to use the statement in the propo-

sition. We expect that students will discover that it is not possible because based on lesson 1 and 2

they have knowledge about that we need the right assumptions in order to employ a method cor-

rectly. Archimedes’ method can not be employed due to that fact that the parabola has been cut twice,

leaving a figure with two straight lines at a 90◦ angle, rather than just one straight line meeting the

parabola. Some students may try to extend the parabola in order to create a figure which satisfies the

construction in Proposition 1. From this we expect some students to divide Archimedes’ result by 2,

i.e. 4/3
2 .

In conference 3.1, students are encouraged to share their ideas on how to determine this area. We

expect them to be able to conclude that they can not determine the blue area in the figure presented.

This leads to, that the teacher informs the students that Newton actually had a method for determin-

ing the area of this figure without. Therefore a brief introduction to Newton is made. The teacher

then poses 2Q3
7 (How did Newton determine the area, and how did he argue for it?), the students

7Phrased as: "Hvordan bestemte Newton arealet? Hvordan argumenterede han for det?"



Master thesis Nynne & Amanda Page 90/ –

work on the question in groups where they are told to investigate the part of the compendium which

concerns Newtons Rule 1. Below, we present the questions we expect to be derived from 2Q3:

2Q3 How did Newton determine the area, and how did he argue for it?

2Q3.1 Which methods did Newton use in his proof of Rule 1?

2Q3.1.1 What is analytical geometry?

2Q3.1.2 What does Newton mean by ’Curve’?

2Q3.1.2.1 What type of curve does Newton present in Rule 1?

2Q3.1.3 Was Newton familiar with the notion of functions?

2Q3.1.4 How did Newton perform algebraic manipulations?

2Q3.1.4.1 Does Newton divide by zero?

2Q3.1.5 What are ’infinitely small’ increments?

2Q3.1.5.1 What are infinitesimals?

2Q3.1.5.2 What does Newton mean when he states that ’terms multiplied by o will vanish’?

2Q3.2 How did Newton argue for his method?

2Q3.2.1 How does Newton proof that his method works in general?

2Q3.2.2 How rigorous is Newton’s proof?

2Q3.2.2.1 Did Newton question the rigour of his mathematics?

2Q3.2.2.2 What would a contemporary mathematician think of Newtons mathematics?

2Q3.2.2.3 Does Newton divide by 0?

2Q3.2.3 Why does Newton begin by proving a specific example rather than the general case?

2Q3.3 When Can I use Newton’s method?

2Q3.3.1 How generalisable is Newton’s method?

2Q3.4 Where did Newton acquire his knowledge from?

2Q3.4.1 What was algebra to Newton?

2Q3.4.2 What did Newton mean by ’quadrature’?

2Q3.4.3 Was Newton the first to work with infinitely small quantities?

2Q3.4.3.1 Who worked with infinitely small quantities before Newton?

2Q3.4.3.2 What similarities can we find between Newton’s infinitesimals and Archimedes’ in-

divisibles?

In conference 3.2, the students initial thoughts on 2Q3 will be discussed in plenum. In particular, the

teacher will ask if students found anything strange or noteworthy. As we can see from the SRP for

2Q3, it has potential to go in a lot of different directions and this part of the teaching sequence will be

more guided than the first part. Below, we put forth some possible answers to selected questions.

2 A3.2 How did Newton argue for his method?

When consulting Newton’s way of argumentation, students may answer that Newton performs a di-

rect proof with algebraic manipulations. In a discussion of Newton’s argumentation, the question of
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whether his argument had problems should be derived - either posed by the students or the teacher

2Q3.2.2 (How rigorous is Newtons proof?) in order to discuss rigour pertaining Newton’s Rule 1. In order

to get closer to an answer to this questions, students may look in Newton’s text to see whether he

himself pointed out issues, i.e 2Q3.2.2.1, (Did Newton question the rigour of his mathematics?) and find

that he does not, as Newton states that the argument is a ’proof’ without posing any concerns. In

the first two lessons the students have discussed rigour regarding Archimedes, where it was evident

that Archimedes was thorough in his self-criticism. In this respect, Newton stands in contrast to

Archimedes. The mathematics lessons the students usually participate in are based on stating and

proving facts, the didactic contract may result in the students concluding that the argument is rigor-

ous enough when not exposed to criticism. This is in particular true for students who have a proof

conception of type 3, (relying on authority), as they may think that a theorem is proved simply because

they are told by an authority that it holds. Other students may trust that Rule 1 has been proved after

it has been confirmed by example, which is what Newton does in the first part of his argument. This

reflects a proof conception of type 2 (based on convictions).

2 A3.1 Which methods did Newton use in his proof of Rule 1?

At this point in the teaching sequence, students have gained some familiarity with our design, and

thus may tend to try and identify methods Newton might use in his argument. This we expect based

upon the students work with Archimedes’ text, by which the students are assumed by now to be able

to state e.g. ’that the law of the lever is a method’. In this way we expect the students to search for if

Newton uses the word method in his text, as Archimedes did. Newton uses this word in the first quote

we have incorporated in the compendium in the Newton part - in which the students are expected to

notice the following sentence:

And whatever the common Analysis [that is, algebra] performs by Means of Equations of

a finite number of Terms (provided that can be done) this new method can always perform

the same by Means of infinite Equations.

From this quote the students should be able to identify which methods Newton states he does not

use and which he does, namely a method which is based on infinite equation. We do not expect the

students to be able to say anything about what this method is by now. But they should be able to

identify the ’name’.

The investigation of this question is further encouraged by the information provided in the com-

pendium. If students consult the compendium, they will also find descriptions of analytical geome-

try, curves and Newtons notion of functions, which gives rise to 2Q3.1.1, 2Q3.1.2, 2Q3.1.3 being student

posed. In particular, we expect that 2Q3.1.3 will promote students to reflect upon the concept of a

function as it is introduced in upper secondary school, and thus use history in an action oriented

way. Here we expect them to be able to derive that the notation and formalism regarding functions



Master thesis Nynne & Amanda Page 92/ –

did not just come to be by chance, but is the product of a long history of developing analytical geom-

etry.

After conference 3.3, the teacher will pose 2Q3.2.2 (How rigorous was Newton’s proof). In the group

discussion, if the students are struggling and/or have not yet brought attention to the issue with zero

division, the teacher will have pointed to the following passage during conference 3.3:

On taking away equal quantities ( 4
9 x3 and z2) and dividing the rest by o, there remains

4
9 (3x2 + 3xo + o2) = 2zv + ov2. If we now suppose Bβ to be infinitely small, that is, o to be

zero, v and y will be equal and terms multiplied by o will vanish

and the groups are asked to specifically consider the mathematical rigour in this passage. In confer-

ence 3.4, we expect that some students will point to the fact that Newton divides by zero, and if not,

the teacher will point to this issue. Thus, we will force 2Q3.2.2.3 (Does Newton divide by 0?).

2 A3.2.2.3 Does Newton divide by 0?

As can be seen in the SRP for 2Q3, we expect this question can be derived from more than one path.

We deliberately included the question in several places, since the lack of rigour from a scholarly point

of view is a good example of how mathematics have changed over time. Dividing by 0 is a clear

violation of the rules of algebraic manipulations, which the students are expected to be familiar with

- they are expected to know that ’zero division is not allowed’. We expect that student will derive

from the text that, yes is some way Newton divides by zero

Lesson 3 concludes with Conference 3.4 including the discussion of zero division. We start lesson

4 with a continuation of the discussion of zero division, followed by a plenum discussion of this in

conference 4.1. In the following devolution, the teacher poses 2Q3.1.5.1.

2 A3.1.5.1 What are ’infinitely small’ increments?

We expect the students answer to be somewhat intuitive, understood at they probably read this sec-

tion and imagine something being so small, that it in all practicality is equal to zero (but not quite).

In the light of the first two lessons, the students may compare them to indivisibles, or consult the

compendium to find a description of infinitesimals as infinitely small quantities. In this case, they

would be able to state that: infinitesimals are infinitely small, however they are not 0 (cf. Appendix C).

Further, since students are expected to be familiar with the notion of limits, they may think of the

’infinitely small’ as variables tending toward zero. Students may be able to answer that infinitesimals

has functioned as a tool in mathematics before the notion of limits was properly established. Such an

understanding will give rise to a discussion of how mathematics have changed over time, because

there has been a need for a more rigorous foundation.



Master thesis Nynne & Amanda Page 93/ –

In Conference 4.2, groups share their investigations of infinitesimals. We expect it to be a difficult

concept to grasp, and thus there will be an institutionalisation by the teacher. Even if the concept

does not settle easily with the students, we expect that they will be able to compare their size to

zero and thus raise doubts about Newton’s method. The remaining part of the lesson will be centred

around placing the content of the teaching sequence in a broader perspective, i.e. comparing the two

historical workplaces, which they have encountered and using this to reflect upon their present tool.

Thus, we now present questions derived from 0Q4.

0Q4 What differences and similarities are there between the methods of Archimedes and

Newton?

0Q4.1 Is Archimedes’ method evident in the work of Newton?

0Q4.1.2 Could Newton use Archimedes method?

0Q4.1.2.1 Why/why not?

0Q4.1.3 What could Newton do with his method that Archimedes could not?

0Q4.1.4 Was Newtons method an improvement?

0Q4.1.4.1 Was Newtons method more generalisable than Archimedes’?

0Q4.2 Could Archimedes and Newton determine the same types of areas?

0Q4.2.1 How did Archimedes describe the figures, he determined the area of?

0Q4.2.2 How did Newton describe the figures, he determined the area of?

0Q4.3 Is Newton more or less rigorous than Archimedes?

0Q4.3.1 What is the difference between Archimedes’ indivisibles and Newton’s infinitesi-

mals?

Note that we do not expect many of the derived question to arise before the written assignment. Af-

ter Conference 4.2, students are asked to discuss the relation between Archimedes’ indivisibles and

Newton’s infinitesimals, i.e. 0Q4.3.1. Their answers will not be shared with the class, but are expected

to form part of answers given in the assignment. Afterwards, the groups are given different assign-

ments: All groups are asked to discuss a different view on how to determine an area, and how this

is argued - Two groups are asked to answer the question in the context of Archimedes, two groups

in the context of Newton, and three groups in a contemporary context. This will be discussed by the

students in groups. The answers given here are not expected to be new, but this exercise is included

to give the students the opportunity to make a recap of the four lessons.

The groups discussion of contemporary mathematics may go more in depth with integral calculus

here. We have not discussed contemporary mathematics except for when posing Q1 and Q2, but we

expect similar answers here, since we expected those questions - especially Q1 - to be answered with

the students’ existing knowledge, of which integral calculus is a big part. For this reason, we don’t

present any new expected answers here.
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After the groups have worked, the teaching sequence is concluded with a plenum discussion of their

findings. We expect students to take notes from the other groups’ presentation about the differences

between the rigour and reasoning as well as methods of area determination of different times. In the

end, we present the assignment that is to be handed in two weeks later.

12.4 The Assignment

We have made the assignment in such a way that a student who have attended the four lessons should

be able to complete it without the need for any knowledge which have not been available at class or

in the compendium. We chose to have the students answer the assignment individually in order to

gather a broader data set and information about the students’ individual reflections. We constructed

the questions in the assignment with the intend for it to function as a reflection paper on the teaching

sequence.

The focus in the in-class teaching sequence was mainly on direct work with the authentic mathemat-

ical sources and the workplaces surrounding them. In the assignment, the contemporary perspective

is brought in, when the students are using history in an action oriented way. The assignment is cre-

ated to function as a ladder from observer history to action history. The question of the assignment

are:

• ∗Q1 How did Newton and Archimedes determine areas? What could they determine

the area of? Here you should comment on the rigor in their arguments.8

• ∗Q2 What are the differences and similarities between Archimedes’ and Newton’s

methods? What are the advantages and disadvantages of the different methods?9

• ∗Q3 How do Archimedes’ and Newton’s methods relate to the usual method you

have learned in school for determining areas under curves? Is that method rigorous?

(Hint: Think of the notion of limits!)10

(Hint: Tænk på grænseværdibegrebet!) (cf. Appendix E.1)

∗Q1 is intended to encourage the students to use history as observers, as it is limited to the respec-

tive historical workplaces. ∗Q2 is bringing the students closer to an action history use as they are

asked to compare the two methods. Even though they are not actually orienting themselves in their

present, the comparison prompts an action use of history. ∗Q3 encourages the students to actually

orient themselves in their present through action history. In this way the assignment is built as a

ladder with three steps of the two uses of history and a conjunction of these.
8Hvordan bestemte Newton og Archimedes arealer? Hvad kunne de bestemme arealet af? I skal her kommentere på

stringensen i deres argumenter.
9Hvilke forskelle og ligheder er der mellem Archimedes’ og Newtons metoder? Hvilke fordele og ulemper er der ved de

forskellige metoder?
10Hvordan relaterer Archimedes’ og Newtons metode sig til den metode, du har lært i den normale undervisning, om at

bestemme arealer under kurver? Er den metode stringent?
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For question ∗Q1 we expect the students to draw on the answers which they have formed in class

regarding the path derived from 1Q2 (How did Archimedes determine the area, and how did he argue for

it?) and 2Q3 (How did Newton determine the area, and how did he argue for it?). Regarding question

∗Q2 it is the path of derived question from 2Q4 (What could Newton do with his method that Archimedes

could not?). Though it is only briefly worked with in class, we expect the students to be able to com-

pare the two methods independently based on the in-class work. In this question the students are

explicitly comparing two different mathematicians’ workplaces, which will launch their comparison

of Archimedes’ and Newton’s methods to their own, integral calculus. In this question we expect

students to employ developed answer relating to the path of 0Q1 (When have I argued enough for my

method?). This question can in fact shed light on how our teaching design has fostered an orientation

in the rigour and reasoning regarding contemporary area determination.
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Chapter 13

Introduction to Part IV

Our hypothesis is that if we can place students as observers of mathematics of the past by working

directly with authentic mathematical sources, we can create an environment which fosters a discus-

sion of mathematics of the present. We suggest that by displaying the rigour and reasoning of past

mathematicians’ arguments of methods in the field of area determination, we can create a milieu

where the students are able to discuss rigour and reasoning in the field of area determination in their

contemporary context. Thus we proposed a fluctuation between action oriented use of history and

observation use of history.

In order to analyse how the realised teaching sequence has or has not supported our hypothesis,

we need a theoretical tool which allows us to tune in on the role played by the authentic mathemati-

cal sources. For this purpose we will make use of the media-milieu dialectics from ATD, cf. Section

3.4. This will allow us to identify how the incorporation of both uses of history has furthered or de-

limited the students’ reflection upon rigour and reasoning in their contemporary mathematics. For

example when working with questions that relate directly to the authentic mathematical sources,

which at first functions a media, students form personal answers A♥. An example of a question which

fosters observer-history use is: When did Archimedes believe that something was proved?. The students’

answers A♥ will then be available as existing answers of the milieu later, when the students answer

action-history related questions, such as: When do you believe that something is proved? As such this tool

can enable us to describe the interplay between media and milieu.

We will first analyse the students’ work as observers of history, in order to investigate how the

knowledge the students gained in this process affects their action history use. We will refer to the

main teacher implementing the design as "teacher" or "visiting teacher", and to the usual teacher of

the class as the "regular teacher".
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Chapter 14

Data and the Realised Lesson Plans

Before we conduct the analysis of our teaching sequence we will present the data we have gathered

and the realised lesson plans.

14.1 Gathered Data

The class consisted of 28 students who worked in seven groups during the teaching sequence. Our

data consists of 26/28 assignments, 6/7 screen casts from lesson one, 7/7 from lesson two, 6/7 from

lesson three, 3/7 from lesson four. Only two screen casts from each day have sound, and one of

them only partly, as the regular teacher instructs the group on how to turn off the microphone. It

appears that he thought it was not important for our research. We expect he might have instructed

more groups to do the same. Therefore most of our data is based on visuals. This will be a limitation

for our analysis, as we are not able to hear the students’ group discussion. Furthermore we have

obtained 4/7 documents with notes taken in groups during the teaching sequence. These documents

will be referred to as group notes. Lastly we have recordings of all plenums talks during the teaching

sequence, however the enumeration of the students in the transcription is reset every time we start a

new transcription, thus "Student 1" in one transcription is not necessarily "Student 1" in another.

A presentation of the full realised SRP diagram will not be presented, as our limited data with sound

does not establish a solid foundation and it would therefore not be representative for our study. How-

ever, we will present smaller segments of sequences related to some paths. Furthermore, because the

assignment functioned as a reflection paper on the four lessons, we will incorporate students’ answers

throughout the analysis, rather than treat it separately.

14.2 The Realised Lesson Plans

During implementation of our teaching sequence the lesson plans changed slightly, and some things

were switched around due to time constraints and the students’ way of interacting with the milieu.
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For example we did not foresee that including the authentic sources in the compendium in English

would cause issues, as the curriculum for upper secondary school requires that students work with

mathematical texts in a foreign language, preferably English (Børne- og Undervisningsministeriet,

2022), but during the implementation it became evident that the students had trouble with the lan-

guage barrier. This stalled the process as the students were focused on translating the texts, some

students word by word. Table 5 through 8 in Appendix B shows the realised lesson plans.



Chapter 15

Data Analysis

In Section 8.2.2, we identified and argued for that the three different regional MO’s Θgeom (for ge-

ometric arguments), Θmech (for mechanical arguments) and Θindi (for the use of indivisibles), of

Archimedes’ workplace are associated with different levels of rigour. Further, regarding Newton’s

workplace we identified three regional MO’s in Section 8.3.2 with the theories Θan.ge (for analytic

geometry), Θun.ar (for arithmetics), and finally ΘNewt (for praxeologies that draws on Newtons own

developed infinitesimal methods), where the rigour of the latter one is questionable. Following our

proposed methodology, we designed our teaching sequence such that the students would engage

tasks related to all six of these regional MO’s and fluctuate between an observer history use and an

actions use of history.

15.1 Students Initial Encounter with Q1 Before Handing out the

Compendium

The first lesson took point of departure in the yellow area of figure 11.1, with the teacher posed

question; Q1: How would you determine the yellow area in figure 11.1, and how would you argue for the

method you have used?

Figure 11.1: Showed to the class when posing the question: "How would you determine the area of

the yellow figure, and how would you argue for it?"
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The didactical system describing the initial discussion consists of

S(X1, X2, ..., X7, Y1, Y2, Q1)➥A♥
1

where Xi represents each of the 7 groups, and Q1, which is being studied by the groups guided by Y1

the visiting teacher, and Y2 the class’ regular teacher who participates in group discussions.

At this point, the compendium had not been distributed to the students. Thus, the milieu brought

together can be described as

M =
{

A♢
1 , A♢

2 , ..., Q1, 1Qi

}
where A♢

i represents the students’ existing knowledge, and 1Qi the questions derived from Q1.

The students immediately posed question 1Q1 (Which methods can I use that I am already familiar with?),

which led to the path:

1Q1.1: Can I use integral calculus to determine the area?

1Q1.1.1: Can I use the definite integral?

1Q1.1.2: Can I use the indefinite integral?

1Q1.2.1: How can I use grid paper (i.e. squares)?

1Q1.3: How can I plot the figure with digital tools?

1Qa: How can I use ChatGpt to determine the area?

1Qb: Can I draw a circle and divide it by two?

From this path it is evident that our generating question did not foster the branch of questions re-

lated to 1Q5 (When have I argued enough for my method and my result?). Therefore it seems that the

students do not draw on any existing knowledge regarding rigour and reasoning, even though it is

treated in a separate chapter in their text book, cf. Section 9.3. It is also evident that the students

mostly relied on their existing knowledge of integral calculus, as we expected, as they drew on exist-

ing answers such as how to calculate the area between two functions. We did not expect 1Qa to occur,

but it is evident that some students regard AI as a tool that can be used in mathematics.

As expected, Q1 led to a dead end, because the students did not have any existing answers A♢
i avail-

able to develop an answer, A♥
1 to Q1. Instead, the question fostered a plenum discussion of why the

students could not use the methods they had learned from integral calculus, including what assump-

tions one needs to establish before using the theory from integral calculus and why they are essential.

Here, we present a transcription of part of the plenum discussion from conference 1.1 (cf. Appendix

D.1):

Student 1: The definite integral

Visiting Teacher: The definite integral. And what do we need to know to be able to

compute the definite integral? [silence from student 1] Others can
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answer as well. What do we need if we want to find the definite

integral here? What information do we need?

Student 2: We need to know the limits.

Visiting Teacher: yes, and what are the limits here?

Student 2: It’s where those sides meet.

Visiting Teacher: mmh, Yes, and what do you think? [a third student raises their

hand]

Student 3: well, we are not told that, and we don’t know the function equa-

tions either.

Visiting Teacher: no [affirmative]

Student 3: ... so we actually can’t.

Visiting Teacher: yes, it’s a bit hard to know exactly what the expression is here,

right? So... are there any other ideas on how we can do it? Yes,

there in the back [a fourth student raises their hand]

Student 4: An indefinite integral then?

Visiting Teacher: But we still need to know what the function is, right? (...) But if we

don’t know what this function is and if we don’t know how long

or what the limits are with respect to the coordinate system. What

can we do then? What is your best guess?

Student 5: Draw it.

The students first proposed to use the definite integral and needed a lot of guidance to realise why it

could not be used. Even after it was established in plenum that the definite integral cannot be used

when we don’t have any information on boundaries, a student proposed to use the indefinite inte-

gral. This discussion reflects how the students regard theorems, such as the main theorem of integral

calculus they know from Plus STX A3 (cf. theorem B), as mere ’tools’ they can use to solve a problem

without any connection to the discourse about why. The students exhibit a ’trial-and-error’ approach

to mathematical problem solving in this transcription, which points to a lack of an active justification

of why the theorem can be used, thus the technology tied to the task of determining areas with inte-

gral calculus is weak.

However, since the students eventually realise that the techniques from integral calculus cannot be

applied, they do come to the conclusion that the use of integral calculus is not fruitful. They con-

tinue their shotgun approach by suggesting different methods, which also fall short in answering the

question.
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15.2 In-Class Work

After the initial investigation the students were introduced to the compendium, and it was revealed

that Archimedes had found a way to determine the area. Because the teacher states that it is in not

possible to determine the area with integral calculus, it is assumed that the fact is integrated in the

students’ milieu. The students seek other paths than integral calculus to answer Q1, and turn to in-

vestigate the compendium which also becomes part of the milieu brought in by the teacher.

In the a priori analysis we identified four main branches derived from 1Q2 (How did Archimedes deter-

mine the area, and how did he argue for it?):

1Q2.1 Which methods does Archimedes use in the demonstration of Proposition 1?

1Q2.2 When did Archimedes believe something to be proved?

1Q2.3 When can I use Archimedes’ method?

1Q2.4 Where did Archimedes acquire his knowledge from?

Question 1Q2.3 was only posed as a derived question from Q2 regarding Newtons method. Question

1Q2.4 was dealt with explicitly when students were asked to investigate Archimedes’ tool box in the

compendium.

Furthermore we also identified four main branches derived from question 2Q3 (How did Newton de-

termine the area, and how did he argue for it?):

2Q3.1 Which methods did Newton use in his proof of Rule 1?

2Q3.2 How did Newton argue for his method?

2Q3.3 When Can I use Newton’s method?

2Q3.4 Where did Newton acquire his knowledge from?

Question 2Q3.3 and 2Q3.4 were not dealt with due to Newton’s text being to difficult for the students.

The analysis of the students’ in class work is structured such that we first investigate the students’

observer history use and subsequently their action history use.

15.2.1 Observer History Use

In this section, we analyse how the students engage with the milieu through the lens of observer

history.

Archimedes’ View of Mechanical Arguments

The question 1Q2.1.1 (What is the law of the lever?) was posed earlier than expected in the design of

our lesson plan. It was planned to be content of lesson 2, but ended up being a significant point of
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discussion in lesson 1, when students were asked how Archimedes argued for his method. With the

compendium brought in by the teacher, and the students’ free use of all sources available on their

computers, the milieu becomes:

M =
{

A♢
1 , A♢

2 , ..., W1, W2, ..., D1, D2, ..., 1Q2.1.1

}
Here, Wi describes works provided in the compendium as well as other sources students might in-

vestigate by using search engines or similar sources, and Di describes data collected by the students,

e.g. through experimenting with balancing a pencil on their finger to find equilibrium. The didactical

system describing the initial investigation of 1Q2.1.1 can be described as:

S(Xi, Yi, 1Q2.1.1➦M)➥1 A2.1.1
♥

1 A2.1.1

From the screen recordings we see that all the groups approach the question of how Archimedes ar-

gues by consulting the compendium, and most groups are quick to ’google’ law of the lever. It seems

that they believed they needed to answer what is the law of the lever in order to even consider answering

why can it be used. Due to the lack of sound on the screen recordings, we are not sure what prompted

the students to look into this particular notion. In one of the recordings, it seems that the group looks

op the notion after reading the passage (in Danish in the compendium) "After Archimedes used the

lever principle to understand how the figures relate to each other, he resorted to some already known

results.1" This phrasing is accessible to the students, and it implies the use of a specific tool. It suggests

that the students understand an argument by the tools that are used.

Based on our data it seems that most of the students gained an intuitive understanding of the princi-

ples of the law of the lever. The screen cast from a group showed that the students consulted Google

as well as the compendium, which eventually ended up with the following group note:

The law of the lever, is about finding the point of balance, if there is a lot of weight on one

side and less weight on the other, the balance point will always be closer to the side with

the heavier weight. 2

Another group answers the question of how Archimedes argues for his method in the notes with the

sentence "he talks about gravity",3 referring to the law of the lever. This prompts the group to pose

1Q2.1.1. In their investigation of this they consult the compendium before they give the answer in

their group notes:

1Da: "Efter Archimedes har brugt vægtstangsprincippet til at indse, hvordan figurerne forholder sig til hinanden ovenfor,

griber han til nogle allerede kendte resultater"
2Da: "Vægtstangprincippet, handler om at finde det punkt hvor der er balance, hvis der er meget vægt i den ene side og

mindre vægt i den anden vil balancepunket altid være tættere på den side hvor den tungeste side er".
3han snakker om tyngdekraften
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Based on the idea of when something is in equilibrium.

Things that are in equilibrium, at equal distances, are of equal size.

There should be a smaller mass on the left side and a larger mass on the right side. The

distance between "centre of gravity" and the mass A is length a. The distance between the

centre of gravity and mass B is length b.(Group 7)4

The answer from this group is a bit more technical, but at this point, the group does not actually

use the denoting of mass and lengths to anything. This is the most technical answer we find in our

data in the group notes. Some of the handed in assignments do provide a more formal mathematical

description. As an example, one student writes:

Archimedes utilized the law of the lever. The law of the lever: based on when something

is in equilibrium and can be described by the formula B
A = a

b
5

Even though a formula is actually provided here, it does not actually come with an explanation of the

meaning of A, B, a and b.

We have no data from students who both manage to give an intuitive explanation of the principle

and a more formal technical description. Thus, we do not expect the students would be able to fol-

low the deductions Archimedes makes when he solves tasks of the type presented in table REF***.

However, our goal with the focus on mechanical praxeologies was not for them to understand direct

application of the law of the lever, but rather gain insight into the place it has in a mechanical ar-

gument. Therefore the media brought into the milieu by us intentionally did not include a technical

representation of the law of the lever, as we only intended for the students to gain an intuitive under-

standing of the law of the lever, in order to discuss how it affects the level of rigour in Archimedes’

text. However the technical representation was brought into the milieu by the students (and in part

spontaneously by the teacher as an answer to the students’ questions). The desire to understand the

notion as a "set of rules to follow" may be a result of the didactic contract, as they are used to mathe-

matics being straight-forward applicable formulas.

In realising that the students were focusing more than intended on the technicalities, the teacher

tried to change the focus of the discussion to what mechanical arguments are, and what their place

is in relation to rigour of mathematical arguments. Therefore 1Q2.2.1.1 (What was the attitude towards

mechanical arguments at the time?) was teacher posed along with 1Q2.2.1 (What is a mechanical method?)

1 A2.2.1 and 1 A2.2.1.1

4Da: "Bygger på ideen om hvornår noget er i ligevægt. Ting som er i ligevægt, i lige lang afstand, er lige store. Der skal

være en mindre masse på venstre side, og en større masse på højre side. Afstanden mellem center of gravity og massen A er

længden a. Afstanden mellem center of gravity og massen B er længden b".
5Da: 2Archimedes benyttede sig af hans vægtstangsprincip. Vægtstangsprincippet: bygger på hvornår noget er i ligevægt

og kan beskrives med formlen B
A = a

b "
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First, we briefly investigate how the students answer 1Q2.2.1. A good example of this occurs in a

plenum discussion (cf. Appendix D.2):

Visiting Teacher: What is mechanics? I mean, what do you think of when you think

of mechanics?

Student 2: Well, it’s based on a relation you can create in the real world.

Here, we see that the student can provide an intuitive answer 1 A2.2.1
♥ with their already existing

knowledge of what mechanics are. The teacher confirmed the intuition an provided a few examples

of mechanical methods, before asking why one might use mechanical methods in a mathematical

argument, even if it is not rigorous, to which a student answers:

Student 3: Well, if you use the mechanical method, it can give an idea about

if, like, if it can actually be proven.

This student shows an understanding that the mechanical method is something that can give an idea

on whether or not it can be proved, indicating that they understand that proving the theorem is a

process separate from the mechanical method. In general, we see from the screen casts and the group

notes that some students formed a comprehension that mechanical methods did not have a place in a

mathematical proof according to Greek standards. One group copy-pastes part of the preface of The

Method into the group notes and follows it up with their own conclusion that the mechanical method

is not sufficient:

”(. . . )by which it will be possible for you to get a start to enable you to investigate some of the prob-

lems in mathematics by means of mechanics. This procedure is, I am persuaded, no less useful even

for the proof of the theorems themselves; for certain things first became clear to me by a mechanical

method, although they had to be demonstrated by geometry afterwards because their investigation

by the said method did not furnish an actual demonstration.”

He tests something mechanically and then demonstrates it geometrically. The mechan-

ical method is not sufficient to prove/demonstrate anything. 6

This is one of several examples from the data indicating that the preface of The Method by Archimedes

was used as media by the students to form answers 1 A2.2.1.1
♥ of the type "Archimedes did not regard

a mechanical method valid in a mathematical proof," but they are not concerned with why. Thus

the students did not develop a strong technology in relation to Archimedes’ view of the mechanical

method.
6Han afprøver noget mekanisk og demonstrerer det derefter geometrisk. Den mekaniske metode er ikke nok til at be-

vise/demonstrer noget.
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The Discussion of Archimedes’ use of Indivisibles

In order to make sure the students investigate methods in Archimedes’ text related to Θgeom the

teacher guided the students to investigate the pages of the compendium which contain Archimedes’

tool box. This is done to establish a foundation with which to discuss the rigour of Archimedes’

method, in particular, discuss tasks related to Θindi. The groups were told to pick different geometric

notions and were asked to explain how they understood them in their own words. This fostered

an active investigation, and the students were very engaged with the compendium. Because of the

nature of this particular task, the students posed different questions 1Q2.4.i derived from 1Q2.4 (Where

did Archimedes acquire his knowledge from?). They decomposed their existing knowledge A♢
i and the

new knowledge they had gained from the compendium, and then reconstructed answers 1 A2.4.i
♥.

An example of this from Conference 2.1 is how a group considered a common notion from Euclid’s

elements "The whole is greater than the part,7" and expressed it in terms of fractions, which they are

familiar with (cf. Appendix D.4):

Visiting Teacher: It sounds like you’ve started to select some things and have writ-

ten a bit down. I’d just like to start by having one of you tell me

something you’ve chosen.

Student 1: The whole is greater than the part.

Visiting Teacher: What does that mean?

Student 1: Uh, we were talking about fractions, something about having a

whole fraction and then having a whole number, and then frac-

tions are smaller than that.

From this transcription it is clear that the students explicitly tried to relate Euclid’s definition to to

their existing knowledge about fractions.

After the students worked with their chosen definitions, the teacher posed 1Q2.2.2 (Why did Archimedes

believe that a proof was only valid if it was geometric?) as it was assumed that their research and answers,

A♥
2.4.i, relating to selected geometric notions from Archimedes’ tool box, was now available for them

to use as media in their enriched milieu.

1 A2.2.2

Below, we present a transcription of the plenum talk of this question (cf. Appendix D.5):

Visiting Teacher: (...) Does Archimedes himself think that this is a good proof?

Student 1: But is it actually a proof then in terms of him saying that he uses

like mechanism. Or mechanics?
7"det hele er større end en del af det"
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Visiting Teacher: Yes, he uses mechanical arguments.

Student 1: to solve problems.

Visiting Teacher: Does Archimedes think that... So the question is, does Archimedes

think that one can prove something with mechanical arguments?

Student 1: uhhh, yes

Visiting Teacher: Yes [skeptical], no, was my tone very leading, no not really

Student 1: no, okay, then you can’t

Visiting Teacher: [another student raises their hand] what do you think?

Student 2: well he says that he first uses that mechanical method and then

demonstrates it with geometry. So the mechanical method cannot

really prove it. So it’s not an actual demonstration (...)

Visiting Teacher: exactly. He says, he has this mechanical method and, that’s correct,

then he says but afterwards we shall demonstrate it with geometry.

(...)

From this, it appears that the students were able to recognise the fact that Archimedes thought that

proofs should be done by geometry, but only with a lot of guidance from the teacher, and their com-

prehensions seemed to only be based on the fact that they could read in Archimedes’ preface that he

had this believe. The phrases from the students like "det er ikke en faktisk demonstration" are very

closed to the phrasing used by Archimedes, "the said method did not furnish an actual demonstra-

tion". They are basically just stating the facts of the text, but at this point, it still seems like some of

the students struggle to connect this fact to technology.

In order to guide the students to a discussion of indivisibles, they were asked to consult the no-

tion of a line in Archimedes tool box. The discussion was guided even further, to encouraging the

students to investigate how Archimedes uses the law of the lever in his text, because at this point the

notion of the law of the lever seemed to be somewhat familiarised for the students. 1Q2.2.3.1.1 (Can a

two-dimensional figure be made up of one dimensional lines?) was teacher posed.

1 A2.2.3.1.1
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This investigation took point of departure in the teacher posing the question: 1Q2.2.3.1.1.a: How many

lines make up the triangle for Archimedes?, which was not planned. A transcription of a group discussion

on this question is presented below:

Student 1: if we agreed that a line has a width of 0, then it must be infinite

Student 2: yes

Student 1: [calling on their regular teacher] can I ask something? isn’t it just

infinite? if we agreed that a line had a width of 0?

Regular Teacher: yes

This exchange shows that the students were able to apply Euclid’s definition of a line - translated to

their own words as ’a line has breadth 0’ - and deduce the implications it has for the idea of ’adding

lines’. The concept of infinity seemed to be available in some form to the students but they did not

make considerations of what infinity means or how the notion was conceived by the Greeks. In ad-

dition, they quickly seek their regular teacher for confirmation, in search for validation. The regular

teacher confirms that their idea is correct, which limits the possibility of further developing their an-

swer.

From a plenum discussion in Conference 2.3 it seems that students did not have much trouble recog-

nising issues with the notion of indivisibles (cf. Appendix D.6):

Visiting Teacher: (...) what is he [Archimedes] weighing? What are we hanging on

the lever? He has something that he puts out here, yes

Student 1: Yes, in that figure he is using, figure 3, he has something THG

Visiting Teacher: Yes, and what is THG?

Student 1: it’s some kind of, well, equilibrium with the triangle

Visiting Teacher: Yeees... THG itself, what kind of thing is it?

Student 2: A line

Visiting Teacher: A line, so they are lines! That’s actually just it, yes, now I was hint-

ing at something, ha, so he has a point here, where he hangs lines,

right, what do we know about lines? What does a line weigh? Yes?

What does a line weigh?

Student 3: It doesn’t weigh anything

The conclusion from Student 3 in this transcription is also reflected in some of the screen casts and

group notes. The students could recognise that lines do not have any mass and therefore cannot be
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weighed. The group notes have descriptions of indivisibles of differing quality, for example: "Noget

der ikke kan opdeles. Det består måske af ordene in og devide. Så det er undividable". Thus it appears from the

in-class data that, through the compendium and teacher institutionalisation, the notion of indivisibles

was part of the media the groups used in constructing answers 1 A♥
2.2.3.1.1. However, as we will see,

this was not evident from the handed in assignments.

Newton’s Method

As mentioned above, the students had difficulties reading Newton’s proof of Rule 1. This resulted in a

minimal amount of autonomous inquiry from the students, most of the text was reviewed in plenum

sentence by sentence, guided by the teacher. A note from one of the groups, figure 15.1, sums up most

of the students’ approach to Newtons text8.

Figure 15.1: Group notes

Obviously, this group is particularly discouraged, but this group note generally reflects the discour-

agement of the class. In a screen cast, we see that a group includes ’ChatGPT’ as a media in the milieu,

by copying the proof of Rule 1 along with the prompt translate to Danish and something understandable9,

reflecting that they did not find answers in the compendium alone. Here, ChatGPT functions as a

milieu which provides new media to be studied. Through the screen cast we see the cursor move

along with the lines in the "Danish, more understandable" AI-version of the text, but the students still

seem to struggle with following the argument. Therefore they ask their regular teacher to explain the

AI-generated text, bringing him into the milieu.

We did not expect how difficult the students would find it to read Rule 1, as we expected the lan-

guage to be more familiar than the language of Archimedes. Due to the general difficulties, the

visiting teacher guided the students to approach the text in small steps and identify arithmetic ma-

nipulations they were familiar with (cf. Appendix D.9):

Visiting Teacher: [...] Are there any of the things he does that you can understand?

Does he add something... multiply something... What does he do?

Student 1: he takes something and then divides the rest by o

8Da: Rule 1. We don’t understand anything. The proof proceeds as follows: The areas are labeled with letters, and he

suddenly makes an uncomfortably difficult calculation because he divides by 0, which one is not allowed to do.
9Oversæt til en dansk og noget der kan forstås
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Visiting Teacher: yes, exactly. So this first sentence, I can understand, it is a bit

strange. He says: ’taking away equal quantities’. What do you

think ’taking away’ can be translated to?

Student 2: minus

Here, a student is able to provide a translation of an operation in Newton’s text to a language they

understand, but only when asked directly by the teacher. We had expected the arithmetic operations

to be more easily accessible to the students. Instead it turned out the milieu around Newton’s text was

dependant on the teacher to guide the students in constructing techniques to phrases from Newton’s

universal arithmetic to the modern arithmetic they are familiar with. The effort to simply compre-

hend the text ended up constituting a large part of the lesson plan, where the proof of Rule 1 was

discussed in plenum step by step. After explicitly pointing out in plenum that o is made infinitely

small, the teacher shifted to look at potential issues with the rigour of Newtons argument, by posing

2Q3.2.2 (How rigorous is Newton’s proof?).

2 A3.2.2

In the initial group work, a student marked with a hand that they wanted help. Since their regular

teacher was unavailable, the visiting teacher provided assistance. Reluctantly, the student asked if

she was correct that Newton divided by zero, which is not allowed. The students existing knowledge

(that zero division is not allowed) and the knowledge she had acquired from reading the proof of

Rule 1 was decomposed and reconstructed into an answer 2 A3.2.2.3
♥ to the derived question 2Q3.2.2.3

(Does Newton divide by 0?), which she sought to validate against the regular teacher.

In the following plenum discussion in Conference 3.4, a student is also quick to provide the similar

answer (cf. D.9):

Visiting Teacher: okay, great, let me hear what you think here. Are there any thoughts

about some problems?

Student 5: he divides by zero

Visiting Teacher: does he?

Student 5: you can’t do that

Visiting Teacher: and where does he do that? He says that he divides by ’o’, right?

Student 5: yes, but ’o’ was zero. He sets ’o’ to be zero

In general, the students had no doubt about the validity of the statement "it is not allowed to divide

by zero". It was a rule of mathematics that no one questioned, a rule so familiar that they were easily

able to identify where Newton broke the rule explicitly.
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After it has been discussed in plenum whether or not Newton were dividing by zero, the students are

told that ’o’ is an infinitesimal, therefore 2Q3.1.5.1 (What are infinitesimals?) is teacher posed.

2 A3.1.5.1

Below, we present a plenum talk where the students shares their thoughts on infinitesimal after a

short inquiry (cf. Appendix D.10):

Visiting Teacher: okay, let me hear if you have a guess on what we are looking at

with these infinitesimals? (...) Where have you tried to find an-

swers to this question?

Student 1: Google

Visiting Teacher: Google, yes, and what shows up when you look on Google?

Student 1: that they are so small that you cannot measure or see them.

Visiting Teacher: yes, exactly, does it remind you of, yes, what do you say?

Student 2: well, it is just that you consider them as 0 but they are not quite

that (...)

Visiting Teacher: yes, exactly, so you can kind of see that this is what Newton is

doing here, right? Does it remind you of something? We have

worked with? Something that is so small that it, yeah?

Student 3: Those indivisibles [mispronounced]

Visiting Teacher: yes, indivisibles. I think that is what you meant. Exactly, so are

they the same as the indivisibles? [pause]

Student 4: No, because that was something that could not be divided. It was

something like lines and such in width . . . . [unclear at the end]

The description of the difference between indivisibles and infinitesimals given by Student 4 is vague,

but the group notes show that some groups have a more clear distinction of the notions, for example:

Newton’s infinitesimals are values that are very close to 0, but will still get larger if you

add them together.

Archimedes’ indivisibles are equal to 0, so if you add them, they will not get larger, but

remain 0.

Infinitesimals are one dimension larger than indivisibles.10.

10Newtons infinitesimaler er værdier som er meget tæt på 0, men stadig vil blive større hvis man plusser dem med hinanden.

Archimedes indivisible er lig med 0, så hvis man plusser dem, vil det ikke blive større, men stadig 0.

Infinitesimaler er en dimension større end indivisible.
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This group note shows an understanding that in their belief, a figure cannot be made up of indi-

visibles, but it can be made up of infinitesimals, demonstrating an intuitive understanding of the

difference. However, the statement in the last line appears to be a misconception, since it is not clear

how the dimensions of the two notions are comparable to each other. Rather, this is probably a fal-

lacy derived from a plenum discussion about how indivisibles are a dimension less than the objects

they "make up", where infinitesimals match the dimensions of the objects, cf. 1Q2.2.3.1.1 (Can a two-

dimensional figure be made up of one dimenstional lines?).

Ultimately, the difficulties the students had with comprehending the proof of Rule 1 made it diffi-

cult for the them to engage in discussions about the rigour of arguments related to ΘNewt. Instead

we reoriented the focus by asking about the structure of the argument 2Q3.2.a (What is the structure of

Newton Rule 1?).

2 A3.2.a

The question was posed to the students after group work with the part of the proof concerning the

general case, and prompted the following plenum discussion (cf. Appendix D.8):

Visiting Teacher: We talked earlier about him making a rule. But is there more in the

structure we can say something about? (...)

Student 1: He provides a proof for the rule with an example

Visiting Teacher: Yes, he provides a proof with an example. Exactly. So at the begin-

ning of this session, we talked about the difference between when

something is an example and when something is a proof. But what

is this then? Do you have any thoughts on whether it’s a proof or

an example he’s presenting? [long pause] when you prove some-

thing with an example.. [student raises hand]

Student 2: Then it’s a demonstration. About how he uses the rule [short work-

ing pause on what happens after the example]

Visiting Teacher: He presents a rule and then he says, here is an example, I prove it

with an example, and what does he do at the end?

Student 4: Provides the proof without an example

Visiting Teacher: Yes, exactly and what is it then, when it is not an example, then it

is... [long pause] When I asked you to talk with a partner before.

I heard at least three or four of you say it. If it’s not an example,

then it’s more?

Student 4: General
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Here, one student suggests that proving something by example is "a demonstration". This shows that

the previous work with Archimedes’ Proposition 1 had become part of the milieu for this student, as

the word ’demonstration’ did not appear to be a frequent word in their mathematical vocabulary be-

forehand. It also seemed that the student expected that we were looking for an answer similar to the

answers formed in lesson 1 and 2. As the teacher elicited here, several groups in the group discussion

had mentioned the word ’general’ when discussing the general case, but they seemed very uncertain

that it was the answer "we were looking for". This is due to the didactic contract, which made it

difficult to create a space where the students felt that there was not necessarily one right answer, and

they were reluctant to provide an answer that they had not been able to validate. However, several

students showed some understanding of how a proof could be constructed, as well as the difference

between a general proof and proof of an example.

In conclusion the students did engage with tasks related to ΘNewt. However they did not engage

with task relating to Θan.ge. Techniques relating to Θun.ar seemed to be available, but did not bring

much to a discussion of rigour and reasoning in a historical context, since the rules of the arithmetics

have not changed significantly since the historical episode under investigation.

15.2.2 Action History Use

The fluctuation between action and observer history use were made continuously throughout the

teaching sequence. Until now, we have looked at the answers Ai
♥ the students formed in an observer

history context, through working with the provided media and answering questions in context of

a specific historical episode. In this section we will analyse the students’ in class action history use

within two episodes.

When is it Proved?

In lesson 1, after the discussion of mechanical methods and the law of the lever, the teacher shifted

the focus of the class with an action use oriented question 1Q2.2.1.1 (When would I say that something has

been proved?) which was posed at the end of lesson 1. The following plenum talk from Conference 1.4

reveals some of the students’ partial answers 1 A2.2.1.1
♥ (cf. Appendix D.3):

Visiting Teacher: When is something proven? What do you think?

Student 1: Well, we said that, uh, when something, like when something works

the same way every single time it’s used.

Visiting Teacher: And how can we be completely sure that it does? We can move on

... what do you think?

Student 2: When you can prove that, like, an expression is true.
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Visiting Teacher: Yes, how do we do that? What methods do you use? Have you

ever proven something in social studies? [students shake their

heads] Why not? What do you think?

Student 3: You can’t really prove anything in social studies because there can

be several different...

Visiting Teacher: What about in math? There, we can. How do we do it then?

Student 4: It’s about testing. It must be possible to put it to a test, and then it

has to pass that test.

Visiting Teacher: So it has to pass every time. So if we, if we try, my hypothesis

is that I have this bar of balance. My hypothesis is that it is in

equilibrium if these conditions I wrote up before hold. How many

times do I need to test it before we are sure it’s correct? If I try

twice and it works, is that proof? [students shake their heads] How

many times do I need to do it then? Is there a number?

Student 5: No, but if there is no doubt anymore [inaudible]

This plenum talk, along with the group notes, reveals that the students’ 1 A2.2.1.1
♥ vary. In the a priori

analysis, we presented four types of expected proof conceptions. As exemplified in the final line of

the transcription, some students demonstrate a comprehension of type 2, based on convictions. They

also understand that proving is specific to mathematics. The transcription also exhibits an unexpected

conception of proofs, namely based on testing. A student suggests that for something to be proved, it

has to be subject to a test and pass. This conception is similar to how hypotheses are tested in fields

of science outside of mathematics. In one of the group notes includes the following two criteria for a

proof:

• if you use letters in the formula instead of numbers. Numbers are used in exam-

ples/demonstrations 11

• Logically compelling arguments: rules. An accepted rule can imply something else
12

The second bullet adheres to the identified conception 1, based on understanding of standards, however,

the way it is phrased suggests that it has been added after an institutionalisation of the notion of

mathematical proofs by the teacher. The first bullet is related to the same conception, yet much more

vague. In general, it seems that the students have trouble consolidating their thoughts regarding the

definition of a proof and articulating it, and we conclude that the students did not have the assumed

knowledge of proofs in mathematics.

11hvis man bruger bogstaver i formlen i stedet for tal. Tal bruges i eksempler/demonstrationer
12Logisk tvingende argumenter: regler. En accepteret regel kan medføre noget andet
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After this realisation lesson 2 was changed to start with an institutionalising some proof techniques,

including how definitions and and axioms can be used to prove a theorem through logical deduc-

tions. The notion of rigour was also institutionalised, as the students had never even heard the word

before. At this point, it was clear that the existing knowledge the students had available in the milieu

was much weaker than expected.

Archimedes’ Method Became a Part of Their Media

At the end of lesson 2 the blue area, i.e. figure 11.2, were shown to the students, and they were asked

how they would determine the area. This question was revisited again in the beginning of lesson 3.

Figure 11.2: Showed to the class when posing Q2

At this point the students expected available knowledge is both integral calculus and the students

new knowledge regarding Archimedes’ method in Proposition 1.

From a transcription of the students plenum talk in Conference 2.4 about how they would determine

the area we can see that they in fact did consider Archimedes’ result in Proposition 1 as an available

technique (cf. Appendix D.7).

Student 1: We thought about something with a right-angled triangle, um, in-

side this one, and then we have at least some of the area, in some

way, and then a bit like the other one where we multiplied by 4
3 , so

we multiplied by something again.

Visiting Teacher: Yes, can we do it like Archimedes? Can we multiply by 4
3 here? No

no, but um... Well, does anyone have any thoughts, why can we

do it, why can’t we? What needs to be satisfied for us to use what

Archimedes said? Yes?

Student 2: I guess it should be a parabola.
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Visiting Teacher: Yes! Is this a parabola?

Student 2: No.

Here we see that one of the groups tried to apply Archimedes’ method to the problem. However, the

group suggests to inscribe the figure with a right triangle, which is at odds with Archimedes method.

It appears that the technique is not accompanied by a strong technology, as they do not consider

which assumption one needs to have in order to apply it. The choice of inscribing with a right trian-

gle could be based on the fact that the straight sections on the blue figure form a right angle, so if one

wants to inscribe with a triangle, a right one would be an obvious choice. The students change the

technique (i.e. type of triangle) slightly for the technique to fit the situation without any justification.

It is not until the teacher asks about assumptions necessary for the proofs, a student recognises that

it needs to be a parabola.

The plenum discussion of Q2 is quite brief, because it is so similar to Q1. However, we had ex-

pected that the students would focus more on the assumptions needed to answer Q2 in light of the

reflections they made when answering Q1, where they were encouraged to reflect explicitly on the

assumptions one makes when using a theorem in mathematics. This did not seem to be the case.

In conclusion these two episodes shows two different sides of the how the students action history

use came to be in class. The first episode show that because the students did not have the expected

prior knowledge, they are missing something in the milieu to validate their answers against. We had

designed the milieu in a way where the students should validate their ’observatory’ answers using

their existing knowledge of proofs within mathematics. In this historical context the students’ "de-

composing and reconstruction" of the notions rigour and reasoning in historical sources is validated

against their existing knowledge regarding rigour and reasoning. However, the students do not have

a sufficient amount of prior knowledge. The second episode shows the students are in fact able to

identify a technique when reading authentic sources, here they regard Archimedes Proposition 1 as

a ’rule they can apply when they are investigating another area. Furthermore it also seems as they

have not corrected their trial and error approach after their initial encounter with Q1, where they

developed answers as to why they could not use their existing knowledge of integral calculus.

15.3 The Assignment

The assignment was constructed as a reflection paper upon the four lessons. It was designed for the

students to be able to provide answers after the conclusion of lesson 4, without bringing in new me-

dia to the milieu. Therefore, we investigate how the answers A♥
i formed by the groups in-class have

been reconstructed into individual answers, which we will denote A♡
i , in the assignment.
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We have selected two of the students’ assignments in order to represent different types of comprehen-

sion of rigour and reasoning. In the selected assignments, we investigate how the students fluctuate

between observer and action uses of history, as to see how the student validates the historical sources

against their comprehension of rigour and reasoning.

An interesting observation in the data is that is the students varying conceptions of rigour in modern

mathematics. We look more into this in the discussion.

15.3.1 Assignment 1

In assignment 1, the author exhibits some familiarity with the reasoning behind integral calculus as

it is taught in upper secondary school, and associates the notion of limits with rigour. Further, they

understand rigour in opposition to being abstract.

It appears in the assignment that the author constructed an answer 2 A2.3.2
♡ to the question How

did Newton argue for his method?, as they write:

In On Analysis of Infinite Equations Newton describes, how the area under simple curves

can be determined, using what we now know as integrals. He deal with infinitesimal

quantities, which are infinitely small quantities that are not equal to zero. (cf. Appendix

E.2)

The answer here is brief, but concise. Further, the author understands that Newton does not in fact

have the notion of limits available as a tool in his workplace. This is evident later, when the author

exhibits an awareness of the intuition behind the Riemann integral, which enables them to compare

Newton’s method to the notion of limits:

In comparison to the integral calculus that [regular teacher] has taught us, many similari-

ties can be observed especially with Newton’s method, for example with the many terms,

whose sum gives the area under the curve. Now we use the limit value to let a parameter

approach infinitely close to 0, and see what it does to the other terms. (cf. Appendix E.2).

From the two passages, it appears the author relates Newton’s method to integral calculus. However,

the author was able to consider the use of infinitesimals related to ΘNewt through an observer history

use, and subsequently compare the method to their existing knowledge on the notion of limits A♢
i

through an action history use. This reflects the fact that the techniques provided by Newton in Rule 1

have not changed notably, but the reasoning behind the techniques is different today.

In comparison, many of the other assignments reflects that the authors do not understand the dis-

tinction between Newton’s reasoning with infinitesimals and contemporary reasoning with limits, as

an example seen here:
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Compared to the method we use nowadays, which is integral calculus, one could say

that Newton’s method resembles much more the one we use today. We also use schemes

which contain formulas that we can use to calculate the area. Here we also use limits,

which makes this method a little less rigorous, because it can never become 0, but very

close. (cf. Appendix E.4).

Returning to assignment 1, another observer/action fluctuation is apparent in the authors work with

Archimedes. They elaborate in thorough detail on Archimedes’ argumentation and application of

Proposition 1, followed by:

Archimedes demonstrated his theory, but he did not strictly prove it. We have to assume

it is true, although not really rigorous. He also used the law of the lever, so the theory is

only true, if this principle is as well. (cf. Appendix E.2).

The author is able to follow Archimedes’ argumentation on Archimedes’ own terms, reflecting ob-

server history use, and adds his own reflections on when the argument holds - namely, when the

assumptions hold. However, the author does not associate the notion of indivisibles to the rigour of

the argument as we would have expected due to it being treated in-class through question 1Q2.2.3.1.1.

The notion is only apparent in the assignment through a comparison of Newton’s and Archimedes’

methods:

The methods resembles each other by breaking figures into smaller parts, like Archimedes

does with the parallel lines. The disadvandtage of Archimedes is that it is very abstract.

(cf. Appendix E.2).

Here, the author seem to understand Archimedes’ use of indivisibles as a partitioning of the figure,

and states it as a disadvantage that it makes the argument "abstract". It may be that the student has

an understanding of the word "abstract" as meaning "not rigorous", in which case it reflects that the

student has a comprehension of "rigour" as being "understandable" or "accessible".

15.3.2 Assignment 2

The author of assignment 2 displayed a comprehension of the rigour of an argument as connected to

how understandable and generalisable they find the argument. This is evident from their comment

on the rigour of Archimedes’ argument:

In terms of rigour, Archimedes uses too much text without using formulas, which makes it

not understandable and harder to read. Furthermore is the text written with many letters,

which makes it not understandable without a visual reference. (cf. Appendix E.3).

The author does not regard Archimedes’ argument as rigorous because they find it hard to read

and because it contains ’a lot of letters’. Furthermore this author does not find Newton’s argument

rigorous, because Newton does not explain infinitesimals ’properly’:
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Newton’s argument is not rigorous, as he simply does "something" without explaining

what he does. For instance, he does not explain 0=infinitesimal quantities which makes

his argument unclear. (cf. Appendix E.3)

The author regards rigour as dependant on how explicit the author of the text is about their consid-

erations and reasoning throughout the argument. In the quote above, they criticise Newton for not

disclosing the reasoning behind conventions he makes use of, i.e. for not providing any justification

for the use of infinitesimal, rather than criticising the use of infinitesimals because the mathematical

foundation for them is questionable. Thus, we get insight into the authors answer 0 A5.2.2
♡ (When

would I say that something has been proved?): To the author, Newton is not rigorous because he is not

persuasive. The student has a conception of something being proved based on convictions, and the

author is not convinced, because they are not familiar with the arguments used. This is reflected in

their answer 2 A3.1.5.1
♡ to the question What are infinitesimals?.

The author exhibits an intuition that "a curve is partitioned in columns of infinitesimals":

He [Newton] calculated the area by dividing the curve into two, z and ov, where he made

o to be infinitesimal (dividing the curve into column of infinitesimal) (cf. Appendix E.3)

However, more details on the notion is not provided in the assignment, and they do not discuss

whether they could be rigorous in the context of a mathematical argument, it is just stated that New-

ton makes no justifications. It is also evident that the author has a misconception on the notion later,

when they state that Newton uses the notion of limits in his argument:

When we are determing area under curves in our teaching, we use the definite integral as

well as digital tool such as Nspire. In addition to the above methods, we also typically use

three-step rule [3-trins-reglen] (limits) just as Newton did. (cf. Appendix E.3).

As such they are not able to distinguish between infinitesimals and limit values.

Regarding question 0Q5.1 (What does it mean for something to be rigorous?) we can in this assignment

see that the author has formed an answer, 1 A♡
5.1, that something is rigorous if it works the same every

time as stated here:

The method we use in the lessons, is rigorous because we can do the same again and again

and still obtain the same result. (cf. Appendix E.3).

The student reflects that generalisability is the main indicator for rigour in a mathematical argument.

We see the same conception of rigour in several other assignment.

15.3.3 Rigour in General

In both the assignments considered above, the students associates rigour of an argument with it being

understandable. The first author conceives rigour in relation to the mathematical notions used (e.g. the
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notion of limits, which this author accepts as rigorous), and the other is more concerned with whether

or not the argument is explicitly layed out.

Other conceptions of rigour can be found throughout the assignments. Several students state that ar-

guments are rigorous if they use ’logically compelling arguments’ (DA: logisk tvingende argumenter),

as we can see here:

This method [integral calculus] is rigorous because it is logically compelling arguments

which is allowing us to e.g. use integral calculus to determine area under curves, which

has also been proven which makes it rigorous. (cf. Appendix E.5)

However, we see no explanation of what the students mean by ’logically compelling arguments’, and

we have several examples of the phrase being misconceived, for instance:

Archimedes argument is not rigorous. He used, among other things, the logically com-

pelling argument: a line is a lenght without breadth. (cf. Appendix E.6)

In this case, the author even associates ’logically compelling’ to not being rigorous, which is at odds

with the common conception of logically compelling arguments.

Some assignments have very vague descriptions of what rigour means, as here:

This method [integral calculus] is rigorous because it is done in a completely correct way.

(cf. Appendix E.7)

One student exhibits a conception of rigour very close to our own, and what we wanted to commu-

nicate:

The methods usually taught in lesson for determining areas under curves using definite

integrals, can be considered rigorous. This is because they er based on existing mathe-

matical theories and concepts, which is defined and thoroughly proven. (cf. Appendix

E.8)

15.4 In Conclusion

From the a posteriori analysis held against the a priori analysis it is evident that some parts of our

teaching design was too difficult for the students, especially their work with Newton’s Rule 1. The

difficulties led to a lot fewer question posed by the students than we expected in the a priori analysis.

Based on the data we have gathered we do not have sufficient material to create the full SRP paths

for any of the four lesson. If we compare our planned lesson plans with the realised it is evident that

the realised teaching sequence deviate quite a bit regarding lesson 3 and 4 due to challenges with

understanding the text. Lesson 1 and 2 were revised due to an unexpected premature discussion of

the law of the lever, which we welcomed.
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An essential assumption for the fluctuation between action use of history and observer use of his-

tory, was that the students had some prior knowledge regarding proofs within mathematics. We

assumed that the students would validate their inquiry of the authentic historical sources against

their prior knowledge, in such a way that it would create a reflection upon their existing knowledge

of proofs. In some parts this fluctuation did in fact create a reflection upon the rigour and reasoning

in contemporary mathematics, however it mostly provided insight into the students misconception

of what rigour and reasoning is within mathematics.



Part V

Discussion and Conclusion
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15.5 Discussion

15.5.1 What are our Findings?

In the content analysis we found that rigour and reasoning were treated in explicit chapters of the

textbook used by the test class, but in the proofs of theorems in the textbook the method was not

explicated in details. We considered a proof which followed the axiomatic-deductive method, but

the many of the theorems it drew deductions from were implied. Thus, it would require a strong

logos-block to justify the steps of this proof. We were able to identify some challenges of how rigour

and reasoning is treated in upper secondary school.

Our teaching sequence was designed under the essential assumption that the students had exist-

ing knowledge about rigour and reasoning related to area determination. This assumption relied on

our content analysis, which led to an expectation that the students were familiar with the axiomatic-

deductive method, and would associate logical arguments following this method with a high level of

rigour. We knew from the students’ regular teacher that they had not worked with rigour and reason-

ing independently, but that they were familiar with proof techniques. Their text book also followed

the structure of the axiomatic-deductive method. However, only few students from the class demon-

strated familiarity with the axiomatic-deductive method. Further, it was evident in our a posteriori

analysis that the students did not have a strong foundation for discussion of rigour and reasoning.

The word "rigour" (DA: stringens) was unfamiliar and had to be institutionalised in-class. The signif-

icant deviation of the students’ actual knowledge from the expected prior knowledge meant that our

designed teaching sequence did not foster a level appropriate learning environment regarding rigour

and reasoning.

Through teacher institutionalisation and following group discussions, the students were able to de-

velop partial answers A♥
i to questions about proof techniques and rigour. In this way part of the

initial teaching sequence was changed on the spot to accommodate the students level. In-class the

students were able to reflect upon rigour and reasoning regarding the original sources with guid-

ance from the teacher. However, in the assignments, the students’ answers A♡
i still exhibited varying

comprehensions of the meaning of mathematical rigour, and most students associated rigour with

accessibility, generalisability or applicability.

Our data does not provide information on whether individual students have developed a stronger

conception of rigour after participating in the teaching sequence, but by asking the students to com-

ment on the rigour of methods from historical episodes compared to the rigour of contemporary

episodes, we have provided a frame in which the students’ comprehension of rigour and reasoning

is apparent. For example the following quote form an assignment:
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The modern method of calculating the area under curves is rigorous, as it is easy to put

numbers into and a lot less complicated to understand. (cf. Appendix E.9)

By working with historical episodes, this student has built a reference to compare modern mathemat-

ics against, i.e. as "less complicated". It seems the students had trouble applying the methods from the

historical episodes, which helps bring attention to the ’plug and play’ approach to problem solving

the student exhibits here. This demonstrates a lacking connection between praxis and logos block,

and that their comprehension of rigour is connected to applicability rather than logical deduction.

The example above displays an advantage of the inclusion of authentic historical sources, and leads

us to the question of whether teaching rigour and reasoning in relation to area determination could

just have well been taught without the historical angle. With respect to this, we have found that

the students’ inquiry and reflection upon the sources created an arena in which their comprehen-

sion of rigour and reasoning became apparent. The notions of rigour and reasoning can be difficult

to articulate for students, without boiling it down to another ’set of rules’ to follow. In a "normal"

mathematics teaching setting, there is "one right answer" to the problems that are posed. Since this

’one right answer’ has appeared differently in different historical episodes, the work with authentic

mathematical sources created an environment in which the students could participate in reflective

discussions, which is rare in mathematics. Furthermore we found that introducing students to stan-

dards of rigour and reasoning from different historical episodes, they got insight into the fact that it

has changed over time, which encouraged the students to reflect upon their own conception.

The fact that inquiry of original sources has indeed fostered a reflection on some aspects of math-

ematics is evident from some of the students’ assignments. For example, one student reflects on how

mathematics is not a timeless field:

Når man i dag skal finde arealet for en valgt figur, tænker vi slet ikke over, hvordan de

forskellige teorier og formler er blevet udarbejdet løbet af årene. Det har taget mange år

at udvikle de forskellige selve idéen om et areal og det stammer faktisk helt tilbage til

omkring 30.000 år f.v.t. (cf. Assignment E.4)

Here, the student exhibits a comprehension that epistemic techniques and objects change over time.

Similarly, a student shows that they understand how the mathematics of different historical episodes

are dependant on the tools available:

Her bruger jeg værktøjer som Nspire og formler, til at hjælpe med at udregne det - ting

som hverken Archimedes eller Newton havde til rådighed, da de arbejdede med at finde

arealer under kurver. (...) Sammenfattende var både Archimedes og Newton banebry-

dende inden for arealbestemmelse, men deres tilgange var forskellige på grund af forskelle

i tid og tilgængelige værktøjer. (cf. Appendix E.7)
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By connecting methods of area determination to the epistemic techniques available, the student is

able to reflect on how digital tools are useful, but were not available when the theory was developed.

We see a potential for students to understand different mathematical techniques in light of how the

theory has developed rather than merely through how its associated techniques solves tasks.

15.5.2 What did our Proposed Research Methodology Offer?

Our thesis is based upon our proposed research methodology of DE within the framework of both

ATD and historiography, which can be seen as an evolved conception of the established DE within

the framework of ATD. Based on our findings, we argue that this extension of DE is necessary when

implementing original sources in the classroom within the framework of ATD.

The existing framework of DE within ATD does not offer specific guidelines on selecting, implement-

ing, and utilising historical episodes and authentic mathematical sources in the classroom. Hence, a

tool is needed for such inclusion. It was proposed by Johansen and Kjelsen to conduct a theoretical

historical analysis (Johansen and Kjeldsen, 2018) and in the light of ATD this can be done by expand-

ing the notion of praxeologies slightly to historical praxeologies. With this notion, we developed a tool

that can be used to identify knowledge at stake in the selected sources. It could be argued that our

methodology needed to address how historical praxeologies, at a historical scholarly level, should be

transposed into historical knowledge to be taught. For example it became clear from the confrontation

between the a priori and a posteriori analysis that most of the students viewed Newton’s reasoning

of Rule 1 with infinitesimals to be equal to the modern notion of limits. This could be due to limits

being introduced in upper secondary on a highly intuitive level, and the foundational mathematics

that developed in order to form a rigorous notion of limits requires a higher level of abstraction than

what is expected of the students. Newtons infinitesimals are more intuitive and more accessible to the

students. Our methodology did not account for how some historical praxeologies have not changed

as much over time in knowledge to be taught, as it has on a scholarly level. Thus we find that it could

be beneficial to more explicitly connect the historical praxeologies identified on a scholarly level to

the contemporary praxeologies identified as knowledge to be taught. This could be done in addition

to analysing the historical praxeologies, which is still an essential tool to incorporate in the theoretical

historical analysis as this is a way to identify passages in the sources that could be used in a teaching

sequence, thus orient the design.

The combination of historical praxeologies and "contemporary" praxeologies are both essential in

designing a teaching sequence which fosters an observer/action fluctuation, as we have already ar-

gued in the thesis. The observer/action fluctuation created a milieu in which the students could

validate new historical knowledge against existing knowledge of contemporary mathematics. Fur-

ther, Epple’s notions of epistemic techniques and epistemic objects is used to articulate and identify

historical praxeologies that are tied to the workplaces in which authentic mathematical sources have
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been developed.

To our knowledge, the usefulness of implementing authentic mathematical sources in inquiry-reflective

teaching within ATD has not been researched. However, since praxeologies have a historical dimen-

sion, as they develop and evolve over time, the inclusion of historiography is not at odds with the

basics of ATD.

15.6 Conclusion

To conclude on the impact of using authentic mathematical sources in an inquiry-reflective environ-

ment on upper secondary school students’ comprehension of rigour and reasoning in relation to area

determination RQ0, we will address the derived questions individually.

First, we consider RQ1. The selection of original sources relevant to rigour and reasoning in area

determination requires a methodological approach that integrates both ATD and historiography. We

proposed a research methodology based on a theoretical analyses of historical sources, which involves

analysing authentic mathematical texts from the perspective of their mathematical content and histor-

ical context. In order to conduct an analysis of the historical sources and the relevant content at stake

according to the curriculum, we employed both the notion of praxeologies and the expansion histor-

ical praxeologies. Furthermore, we proposed creating an Inquiry-Reflective Learning Environment

where students engage with historical sources in a way that encourages both inquiry and reflection.

This environment should be based on a fluctuation between the two uses of history: action and ob-

server.

Next, we consider RQ2. The potential challenges in teaching rigour and reasoning in upper secondary

school were determined through an analysis of the didactic transposition of rigour and reasoning in

relation to area determination. The assumption that students have prior knowledge about rigour and

reasoning was often not met. This gap necessitated the institutionalisation of concepts like "rigour" in

class, at the expense of a full implementation of the intended teaching design. Some historical texts,

such as Newton’s Rule 1, were found to be too difficult for students to comprehend, leading to fewer

inquiries than anticipated. The implementation of the teaching sequence did, however, shed light

on some misconception the students had regarding rigour and reasoning. We argue, that we could

identify the misconceptions due to the fluctuation between action history and observer history ap-

proach, as it created an environment in which the students were able to engage in a discussion about

mathematics of the past.

Finally, we consider RQ3. While there was some success in fostering reflection on the rigour and

reasoning in contemporary mathematics, our analysis of the didactic transposition did not reflect the
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students’ understanding of rigour and reasoning to a full extend. However, the approach of a fluc-

tuation between observer and action history did help in some instances to highlight the differences

between historical and contemporary practices, promoting a deeper understanding of the evolution

and importance of rigour in mathematics.

In conclusion, the use of historical mathematical sources in an inquiry-reflective environment has

a nuanced impact on students’ comprehension of rigour and reasoning in area determination. The

effectiveness largely depends on the careful selection of sources, the design of the learning envi-

ronment, and addressing students’ prior knowledge. The fluctuation between action history and

observer history can enhance reflection, but requires a more solid foundation of students’ under-

standing of mathematical proof techniques and concepts of rigour. The study illustrates the potential

benefits and challenges of integrating historical sources into mathematics education to deepen stu-

dents’ understanding of rigour and reasoning.
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A Lesson plans

Lesson 1

Time (min) Time acc. (min) Activity

10 10 In plenum: Introduction to the project.

Devolution: Q1 is posed by the teacher. The students are

told to work on this in groups.

5 15 Groups: Groups are working

10 25 Conference 1.1: The students present answers to Q1.

Devolution: The challenges with answering Q1 leads to

the introduction of Archimedes and his work The Method.

Students are asked How did Archimedes determine the area,

and how did he argue. Students are encouraged to use com-

pendium, and are told to look at the section concerning

Archimedes (pp.2-9).

10 35 Groups: The students are investigating how Archimedes

determined the area.

10 45 Conference 1.2: The groups are asked about their initial

encounter with the text and how Archimedes determined

the area.

Devolution: The teacher poses the question: When did

Archimedes believe something to be proved? The students are

guided to read the preface to proposition 1.

10 55 Groups: Students work with the compendium and inves-

tigate the posed question.

5 60 Conference 1.3: The groups share their investiga-

tions, and the teacher makes sure to emphasise why

Archimedes did not himself regard his text as a proof.

Devolution: The teacher poses the question: When would

you say that something has been proved?

5 65 Groups: The groups discuss the posed question.

5 70 Conference 1.4: The groups share their investigations,

and the teacher corrects possible misconceptions.

Table 1: Lesson plan for the first lesson



Lesson 2

Time (min) Time acc. (min) Activity

10 10 In plenum: Brief recap from Lesson 1. The teacher poses

the question: Which methods do I use today when prov-

ing a mathematical theorem? The students discuss this

shortly with the person next to them, and share their ini-

tial thoughts on the matter.

Devolution: The teacher poses the question: Which meth-

ods does Archimedes use in the demonstration of Proposition

1?.

10 20 Groups: Working on the question.

5 25 Conference 2.1: Groups share methods they have iden-

tified. The teacher ensures that the geometric method is

contrasted with the mechanical method.

Devolution: The teacher poses the question: What is the

law of the lever?

10 35 Groups: The groups discuss the posed question.

10 45 Conference 2.2: The groups share their investigations of

the law of the lever.

Devolution The teacher poses the question: What are the

disadvantages of using the law of the lever?

10 55 Groups: The groups discuss the posed question.

5 60 Conference 2.3: The students share their thoughts with

the class. The teacher institutionalises the notion of indi-

visibles and associated issues. The groups are asked to

investigate indivisibles.

5 65 Groups/chat: The groups discuss the posed questions.

5 70 Conference 2.4: The students share their investigations.

Table 2: Lesson plan for the second lesson



Modul 3

Time (min) Time acc. (min) Activity

5 5 In plenum: A brief recap of lesson 2. Now the students

should be able to determine the yellow area employing

Archimedes method.

Devolution: The blue area are shown to the students and

they are asked to discuss whether or not they are able to

determine this area.

5 10 Chat: The students are discussing the question with the

person next to them.

10 20 Conference 3.1: The students share how they would de-

termine the area. The teacher ensures that the students

understand what information they need in order to use

their already known methods.

Devolution: The teacher introduces Newton and the fact

that he could determine this area. Therefore the students

are asked to work with the question about how Newton

did this and how he argued.

10 30 Groups: The groups are investigating Rule 1.

10 40 Conference 3.2: The students share their initial thoughts

on the text and are asked if they found somethings note-

worthy, strange or weird.

Devolution: The students are asked to investigate the text

focusing on what methods Newton are using.

10 50 Groups: The groups are working.

5 55 Conference 3.3: The students share what methods they

identified in the text. The teacher guides the discussion

towards problematic areas.

Devolution I relation to the problematic areas the stu-

dents are asked to discuss whether Newton is rigorous

in the proof.

10 65 Groups: The groups are working

5 70 Conference 3.4: Discussion in plenum of rigour in New-

tons proof. Teacher makes sure students are aware of

Newton’s division of o.

Table 3: Lesson plan for the third lesson



Modul 4

Time (min) Time acc. (min) Activity

5 5 Plenum Recap of lesson 3 with focus on how Newton is

dividing by zero.

Devolution: The students should now work on the ques-

tion of how Newton divides by 0.

10 15 Groups: Group work.

5 20 Conference 4.1: Plenum discussion of the students work.

This leads to the teacher asking about infinitesimals.

10 30 Groups: Groups are working.

15 45 Conference 4.2: Sharing and discussion of the students

work regarding infinitesimals.

Institutionalisering: Infinitesimals are institutionalised

by the teacher.

Devolution & chat Students are asked to revisit how in-

divisibles were defined and shortly talk with the person

next to them about this matter. This will not be shared

immediately with the class as this will be incorporated in

the assignment.

Devolution: The groups are assigned different views on

the matter of how to determine an area and how this is

argued for (Archimedes, Newton, the method they have

been taught in their by their math. teacher.)

10 55 Groups: Groups are working.

15 70 Conference 4.3: Each groups presents how they would

answer this question from their assigned ’perspective’.

Completion: Introduction to the assignment and a good-

bye.

Table 4: Lesson plan for the fourth lesson



B Realised Lesson Plans

Lesson 1

Time (min) Time of day Activity

12 9.42-9.54 Introduction: We introduce ourselves and the next

four modules.

Devolution: Q1 is posed by the teacher. The stu-

dents are told to work on this in groups.

5 9.55-10.00 Groups: Groups are working.

10 10.00-10.10 Conference 1.1: The students present answers to

Q1.

Devolution: Students are asked How did Archimedes

determine the area, and how did he argue. Students

are encouraged to use compendium, and are told to

look at the section concerning Archimedes (pp.2-9).

7 10.10-10.17 Groups: The students are investigating how

Archimedes determined the area.

8 10.17-10.25 Conference 1.2: The groups are asked about their

initial encounter with the text and how Archimedes

determined the area.

Devolution: We pose the question What is the law of

the lever?.

10 10.25-10.35 Groups: Students work with the question.

8 10.35-10.43 Conference 1.3: The groups share their investiga-

tions on the law of the lever.

Devolution: The teacher poses the question: When

would you say that something has been proved?.

5 10.43-10.48 Groups: The groups discuss the posed question.

5 70 Conference 1.4: The groups share their investiga-

tions, and the teacher corrects possible misconcep-

tions.

Table 5: Lesson 1, realised



Lesson 2

Time (min) Time of day Activity

7 14.05-14.12 In plenum:Brief recap from Lesson 1.

Devolution: Teacher poses the question which tools

did Archimedes have available. Students pick 2-3 tools

from the tool box to discuss.

10 14.12-14.22 Groups: Working on the question.

4 14.22-14.26 Conference 2.1: Groups share their investigations.

Devolution: Students are asked to write 2-3 things

answering the question: "Which tools do you have

available that Archimedes did not?"

7 14.26-14.33 Groups: Discussion of the posed question

14.33 14.36 Conference 2.2: Groups share their investigations.

Devolution (14.35): Teacher poses the question

What possible issues do you identify with the argument

in Proposition 1?

10 14.35-14.45 Groups: Discussion of the posed question. Halfway

through the teacher hints to look at the definition of

lines.

5 14.45-14.50 Conference 2.3: Discussion of what is being

’weighed’ with the law of the lever, as well as of

lines and change of dimensions.

Devolution Teacher poses the question What are in-

divisibles?

8 14.50-14.58 Groups/chat: Discussion of posed question.

4 14.58-15.02 Conference 2.4: Groups share their thoughts.

Devolution: Q2 is posed: How would you calculate

area of blue figure?

3 15.02-15.05 Groups: Discussion of posed question.

5 15.05-15.10 Groups share their investigations.

Table 6: Lesson 2, realised



Lesson 3

Time (min) Time of day Activity

5 14.00-14.05 In plenum: A brief recap of lesson 2.

Devolution: The blue area is shown to the students again

and they are asked to discuss whether or not they are able

to determine this area.

5 14.05-14.10 Groups: Discussion of posed question.

5 14.10-14.15 Conference 3.1: Students share what they have discussed.

Devolution: The teacher introduces Newton and the fact

that he could determine this area. Students are asked to

orient themselves in the compendium.

9 14.15-14.24 Groups: Group investigate the compendium

6 14.24-14.30 Conference 3.2: The students share their thoughts and are

asked to compare Newton’s method to Archimedes’.

Devolution: Students are asked to follow Newtons argu-

mentation and write down the steps in their own terms.

10 14.30-14.40 Groups: Groups investigate Rule 1.

10 14.40-14.50 Conference 3.3: Plenum talk an walk through of New-

ton’s proof in the example case.

Devolution: The teacher poses the question What possible

issues do you identify in the proof of Rule 1?

10 14.50-15.00 Groups:: Discussion of posed question.

5 70 Conference 3.4: Students shares their initial thoughts.

Plenum discussion of rigour in Newtons text.

Table 7: Lesson 3, realised



Lesson 4

Time (min) Time of day Activity

5 9.40-9.45 Plenum A brief recap of lesson 3.

Devolution: The students are asked to investigate the

proof of the general case, and describe how Newton ar-

gues.

10 9.45.9.55 Groups: Groups investigate the general case.

10 9.55-10.05 Conference 4.1: Plenum talk and walk through of the

general case.

Devolution: The teacher asks what infinitesimals are and

to locate the use of them in Newtons argument.

15 10.05-10.20 Groups: Group work.

Devolution: Halfway through the group work the stu-

dents are encouraged to compare infinitesimals and indi-

visibles.

5 10.20-10.25 Conference 4.2: Infinitesimals are institutionalised by the

teacher.

Devolution: Students are guided to investigate discus-

sions of Newton’s work in the compendium.

10 10.25-10.35 Groups: Discussion of posed question.

5 10.35-10.40 Conference 4.3: Students share their investigations.

Devolution: The groups are assigned different views on

the matter of how to determine an area and how this is

argued for (Archimedes, Newton, the method they have

been taught by their regular teacher.)

5 10.40-10.45 Groups: Groups are working.

5 10-45-10.50 Conference 4.4: Each groups presents how they would

answer this question from their assigned ’perspective’.

Table 8: Lesson 4, realised
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Historiske ekspeditioner: Arealbestemmelse gennem tiden

Figur 1: Archimedes (venstre) og Sir Isaac Newton (højre)
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1 Archimedes

Archimedes (ca. 287-212 f.v.t.) kom fra den græske by Syrakus p̊a Sicilien, hvor han tilbragte
det meste af sit liv - dog med undtagelse af et kort studieophold i byen Alexandria i Egypten,
hvor oldtidens største lærdomscenter var (Det Alexandrinske Bibliotek). Alexandria havde ogs̊a
været Euklids (ca. 325-265 f.v.t) hjemsted og Archimedes studerede p̊a sit ophold hos Euklids
efterfølgere.

Archimedes var en af oldtidens største videnskabsmænd, og han arbejdede b̊ade inden for
matematik, fysik og teknik. Den græske forfatter Plutarch (ca. 45-120) skrev om Archimedes
værker at:

Det er umuligt indenfor hele geometriens omr̊ade at finde mere indviklede og
vanskelige opgaver behandlet p̊a en mere almenfattelig og enkel m̊ade.

Vi ved, at Archimedes har skrevet mange værker b̊ade om den rene matematik og om den
anvendte matematik. Vi har endda en del overleveret. Et værk, som er overleveret næsten
ved et tilfælde er Metoden. Dette skrift blev først genfundet i 1906 af filologen Johan Ludvig
Heiberg (1854-1928) og senere oversat til engelsk af Thomas L. Heath (1861-1940). I Heaths
tekst indg̊ar der noget moderne notation, som ikke har været en del af Archimedes’ oprindelige
værk.

Metoden blev fundet p̊a en s̊akaldt palimpsest, som ogs̊a indeholdte andre af Archimedes’
allerede kendte værker, samt andre skrifter fra andre forfattere. En palimpsest er et manuskript,
hvor den originale tekst er blevet fjernet, hvorefter der er skrevet en ny tekst p̊a materialet. I
Archimedes’ tilfælde var hans værk blevet overskrevet med en religiøs tekst.

Figur 2: Et billede af en af siderne i palimpsesten, hvor Archimedes’ tekst Metoden er

2
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1.1 Archimedes’ Metoden

Metoden er skrevet som et brev til Eratosthenes (ca. 276-194 f.v.t). Eratosthenes var p̊a dette
tidspunkt en slags øverste bibliotikar p̊a Det Alexandrinske Bibliotek. Archimedes skriver i
forordet til Metoden følgende tekst, hvor han gør sig overvejelser om sine metoder:

Tekstboks 1: Forord til Metoden

[. . . ] Seeing moreover in you [Erastosthenes], as I say, an earnest student, a man of
considerable eminence in philosophy, and an admirer [of mathematical inquiry], I
thought fit to write out for you and explain in detail in the same book the pecularity
of a certain method, by which it will be possible for you to get a start to enable you
to investigate some of the problems in mathematics by means of mechanics. This
procedure is, I am persuaded, no less useful even for the proof of the theorems them-
selves; for certain things first became clear to me by a mechanical method, although
they had to be demonstrated by geometry afterwards because their investigation by
the said method did not furnish an actual demonstration. But it is of course easier,
when we have previously acquired, by the method, some knowledge of questions, to
supply the proof than it is to fing it without ane previous knowledge.
[. . . ]
I am myself in the position of having first made the discovery of the theorem now
to be published [by the method indicated], and I deem it necessary to expound the
method partly because I have already spoken of ita and I do not want to be thought
to have uttered vain words, but equally because I am persuaded that it will be of no
little service to mathematics; for I apprehend that some, either of my contemporaries
or of my successors, will, by means of the method when once established, be able to
discover other theorems in addition, which have not yet occurred to me.
First then I will set out the very first theorem which became known to me by means
of mechanics, namely that:

Any segment of a section of a right-angled cone (i.e. a parabola) is four-thirds
of the triangle which has the same base and equal height,

and after this I will give each of the of the other theorems investigated by the
same method. Then, at the end of the book, I will give the geometrical [proofs of the
propositions]b

aArchimedes referer til forordet i sit værk Quadrature of the Parabola
bDe geometriske beviser er ikke med i dette kompendie

Fra dette forord kan vi alts̊a se, at Archimedes bestemte arealet af et parabelsegment. Senere
i Metoden bliver dette resultat præsenteret som Proposition 1, hvor Archimedes viser, hvordan
hans metode kan anvendes i praksis. Figur 3 viser konstruktionen af den figur, der omtales i
Proposition 1. Tekstboks 2 og 3 viser udvalgte dele af Archimedes’ argument for Proposisiton
1. De dele af teksten, vi har udeladt, har vi opsummeret kort i vores eget sprog mellem
tekstboksene.
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Figur 3: Konstruktionen i Proposition 1

Tekstboks 2: Proposition 1

Let ABC be a segment of a parabola bounded by the straight line AC and the parabola
ABC, and let D be the middle point of AC. Draw the straight line DBE parallel to
the axis of the parabola and join AB, BC.
Then shall the segment ABC be 4

3 of the traingle ABC.
From A draw AKF parallel to DE, and let the tangent to the parabola at C meet
DBE in E and AKF in F. Produce CB to meet AF in K, and again produce CK to
H, making KH equal to CK.
Consider CH as the bar of balancea, K being its middle point.
Let MO be any straight line prallel to ED, and let it meeat CF, CK, AC, in M, N, O
and the curve in P.

aHer benytter Archimedes vægtstangprincippet, som han selv har udviklet

Tekststykket, som følger efter det i kan læse i tekstboks 2 og inden tekststykket i tekstboks 3
g̊ar ud p̊a, at Archimedes nu har konstrueret en figur, som bruges som udgangspunkt for den
videre tekst. Fordi linierne CE og CD er konstrueret p̊a en bestemt m̊ade kan han trække p̊a
en sætning, som allerede er vist af Euklid1 - derfor kan han konkludere at, EB er lig med BD.
Og da linierne MA og MO er parallelle med ED, følger det, at ogs̊a FK er lig med KA, og MN
er lig med NO. Herefter gør Archimedes brug af en anden sætning, som han selv har vist i sit
værk Quadrature of Parabola2, hvilket leder til:

MO : OP = CA : AO

= CK : KN

= HK : KN

Herfra fortsætter Archimedes som i kan læse i tekstboks 3.

1B̊ade Euklid og Aristaeus har arbejdet med kegler, og vi har ikke den præcise kilde Archimedes refererer til.
For det videre arbejde her kan resultatet blot accepteres som sandt.

2Resultatet er ’Proposition 5’ i dette værk
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Tekstboks 3: Proposition 1, fortsat

Take any straight line TG equal to OP, and place it with its centre of gravity at H, so
that TH=HGa; then, since N is the centre of gravity of the straight line MO, and

MO : TG = HK : KN

it follows that TG at H and MO at N will be in equilibrium about K.

[On the Equilibrium of Planes, I. 6,7]

Similarly, for all other straight lines parallel to DE and meeting the arc of the
parabola, (1) the portion intercepted between FC, AC with its middle point KC and
(2) a length equal to the intercept between the curve and AC placed with its center
of gravity at H will be in equilibrium about K.

Therefore K is the center of gravity of the whole system consisting (1) of all
the straigh lines as MO intercepted between FC, AC and placed as they actually are
in the figure and (2) of all the straight lines placed at H equal to the straigh lines as
PO intercepted between the curve and AC.

And, since the triangle CFA is made up of all the parallel lines like MO, and
the segment CBA is made up of all the straight lines like PO within the curve,
it follows that the traingle, placed where it is in the figure, is in equilibrium about K
with the segment CBA placed with its center of gravity at H.

aLighedestegnet som vi kender det i dag, og som det er skrevet her, blev faktisk først introduceret
af Robert Recorde i 1500-tallet. Det må s̊aledes anses for at være en modernisering der er kommet
med oversættelsen af værket efter opdagelsen i 1906.

Efter Archimedes har brugt vægtstangsprincippet til at indse, hvordan figurerne forholder sig
til hinanden ovenfor, griber han til nogle allerede kendte resultater. Han ved, at hvis han tegner
et punkt W p̊a linien CK, som opfylder at CK=3KW, s̊a vil W faktisk være tyngdepunktet for
trekanten ACF. Resultat kommer fra Archimedes’ værk On the Equilibrium of Planes I.15.
Dette resultat bruger han sammen med vægtstangsprincippet til at opn̊a:

△ACF : (segment ABC ) = HK : KW

= 3 : 1

Herfra kommer han med lidt simple udregninger3 frem til det resultat som han ville demonstrere:

segment ABC =
4

3
△ABC

I Tekstboks 4 kan i læse en kommentar, Archimedes selv knyttede til sin demonstration af
Proposition 1 i værk Metoden.

Tekstboks 4: En afsluttende kommentar

Now the fact here stated is not actually demonstrated by the argument used; but that
argument has given a sort of indication that the conclusion is true. Seeing then that the
theorem is not demonstrated, but at the same time suspecting that the conclusion is
true, we shall have recourse to the geometrical demonstration which I myself discovered
and have already published.

3Hint: start med at vise at: △ABC er 1
4
af △ACF !
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1.2 Archimedes’ værktøjskasse

Da Archimedes jo levede for utrolig mange år siden, var der mange matematiske resultater,
som vi kender i dag, men som endnu ikke var blevet udledt i Archimedes’ samtid. Det var alts̊a
begrænset hvilke værktøjer han havde til r̊adighed. Her vil vi præsentere nogle af de sætninger
og definitioner, som var tilgængelige for Archimedes.

1.2.1 Euklids Elementer

Over 13 bøger lægger Euklid et grundlag for plangeometri og rumgeometri s̊avel som talteori.
Archimedes har været bekendt med Euklids Elementer og brugte hyppigt resultater herfra. Vi
har samlet nogle relevante resultater for Proposition 1 i Tekstboks 5.

Tekstboks 5: Vigtige resultater fra Euklid

Udvalgte definitioner fra Euklid’s Elementer bog I

1. Et punkt er det, der ikke kan deles

2. En linie er en længde uden en bredde

4. En ret linie er en linie, som ligger lige mellem punkterne p̊a den.

23. Parallelle linier er rette linier, der ligger i samme plan, og som, n̊ar de forlænges
ubegrænset til begge sider, ikke mødes til nogen af siderne.

’Almindelige Begreber’ fra Euklid’s Elementer bog I

1. Størrelser som er lig en og samme tredje, er indbyrdes lige store.

2. Hvis lige store størrelser lægges til lige store størrelser, er summerne lige store.

3. Hvis lige store størrelser trækkes fra lige store størrelser, er resterne lige store.

4. Størrelser der kan dække (epharmozonta) hinanden, er lige store.

5. Det hele er større end en del af det.

Definitioner fra Euklid’s Elementer bog III

2. En ret linie siges at berøre en cirkel hvis den, trukket s̊a den møder cirklen, ikke
skærer cirklen.

6. Et segment af en cirkel er figuren afgrænset af en ret linie og cirklens omkreds

1.2.2 Tangent

En tangent var ogs̊a defineret p̊a en noget anden m̊ade end i dag. Tekstboks 6 viser hvordan
Appolonius, som levede ca 262-190 f.v.t., beskrev en ret linje, der kan minde om en tangent -
han brugte dog ikke ordet tangent til dette.

Tekstboks 6: Apollonius’ definition af en tangent

Proposition 11. [I. 17, 32.] If a straight line be drawn through the extremity of
the diameter of any conic parallel to the ordinates to that diameter, the straight line
will touch the conic, and no other straight line can fall between it and the conic.
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1.2.3 Vægtstangsprincippet

I værket On the Equilibrium of Planes4 fremstiller Archimedes ligevægtslæren, som bygger
p̊a ideen om, hvorn̊ar noget er i ligevægt. Nogle af de nyttige sætninger fra dette værk som
Archimedes trækker p̊a i Proposition 1 kan ses i Tekstboks 7.

Tekstboks 7: Udvalgte sætninger fra On the Equilibrium of Planes

1 Byrder som er i ligevægt i lige lange afstande, er lige store.

3 [Hvis] ulige store byrder i ulige lange afstand er i ligevægt, [er] den største
byrde i kortest afstand.

6 Kommensurable størrelser er i ligevægt i afstande der er omvendt propor-
tionale med deres vægte.

7 Men ogs̊a hvis størrelserne er inkommensurable, vil de være i ligevægt i afs-
tande der er omvendt proportionale med størrelserne.

I kan ogs̊a klikke p̊a linket HER for at se en animeret illustration af vægtsstangprincippet i
Proposistion 1

1.2.4 Parabel

En parabel var defineret p̊a en anden m̊ade i Archimedes’ samtid. Grækeren Menaechmus (ca.
375-325 f.v.t.) tilskrives opdagelsen ’kegler’ og ’keglesnit’, som er fundamentet for, hvordan en
parabel blev defineret. Selvom overleveringen af figuren herunder er usikker, viser Figur 4 et
billede af, hvordan konstruktionen af en parabel blev anset i Archimedes’ samtid. Denne figur,
eller noget tilsvarende, har indg̊aet i den græske Apollonius (ca. 262-190 f.v.t) værk om kegler
(Conics).

Figur 4: Keglesnit - her kunne det ligne, at buen EPD svarer til en parabel

4Om plane figures ligevægt p̊a dansk
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1.3 Diskussion af Archimedes’ metode

Ved at læse forordet til metoden kan vi se, at Archimedes ikke selv ans̊a metoden som værende
et stringent bevis, men vi kan kun spekulere i præcis hvorfor. Måske handler det om, at der i
metoden sættes en-dimensionelle liniestykker sammen til to-dimensionelle figurer. Vi har dog
ikke en udtalelse fra Archimedes selv, hvor det er klart, hvad han præcis mente.

Vi har dog et citat fra Demokrit (ca. 460-370 f.v.t.), som alts̊a levede et stykke tid før
Archimedes. Demokrit skrev følgende, som peger i retning af, at der allerede dengang blev
gjort overvejelser om, hvorvidt dette dimensionsskifte var meningsfuldt:

Tekstboks 8: Citat fra Demokrit

Hvis en kegle skæres af planer parallelle med grundfladen, hvordan skal man da
forestille sig lagenes overflader, ens eller uens? Hvis de er uens, s̊a vil de gøre keglen
uregelmæssig med mange trappeagtige indskæringer og ujævnheder. Hvis de derimod
er ens, s̊a vil alle lagene være ens, og keglen se ud som en cylinder, da den best̊ar af
ens og ikke uens cirkler; men det er helt meningsløst.

Det dilemma, Demokrit beskriver, har været et velkendt problem gennem tiden, og det omhan-
dler brugen af størrelser kaldet indivisible. Indivisible kan beskrives som værende opbygget af
geometriske mindstedele. For eksempel, i citatet fra Demokrit, er der tale om, at en kegle bliver
betragtet som best̊aende af uendeligt tynde ’skiver’. Disse skiver har ikke nogen højde, og er
s̊aledes to-dimensionelle, mens selve keglen er tre-dimensionel. I eksemplet her er det skiverne,
vi kalder de indivisible, men p̊a samme m̊ade kunne man forestille sig, at en flad to-dimensionel
figur best̊ar af en-dimensionelle linjer, der ikke har nogen bredde.
Meget tyder p̊a at brugen af indivisble blev anset som et værktøj til at opdage ny matematik,
men aldrig i en formel fremstilling af matematikken.
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1.4 Omtale af Archimedes i oldtidens litteratur

Archimedes’ intellekt har sat varige spor i historien. Vi er s̊a heldige at have nogle tekster fra
forfattere, der blot levede ca. 250 år efter hans død, som omtaler Archimedes.

Den romerske retoriker Marcus Fabius Quintilianus (ca. 35-98), bedre kendt som Quintilian,
nævner Archimedes, i sit værk om Talerens opdragelse, som et eksempel p̊a, hvorfor geometri
er nyttig for unge mennesker. Quintilian skriver først bredt om geometri og lidt efter nævner
han Archimedes, som eksempel p̊a en vis mand indenfor geometrien:

Tekstboks 9: Quintilian om Archimedes

N̊ar det kommer til geometri anerkender vi, at dele af den er nyttig for unge men-
nesker: den træner nemlig deres hjerner, skærper deres intelligens og gør dem hurtigt
opfattende. Men fordelene kommer ikke – som ved de andre kunster – n̊ar man har
fattet det, men i indlæringsfasen. Dette er den gængse opfattelse. Det er ikke uden
god grund, at store mænd har brugt megen tid p̊a denne videnskab.
[. . . ]
Lad os ikke her komme ind p̊a det der er nyttigt i krig, og lad os forbig̊a, at Archimedes
ene mand forlængede belejringen af Syrakus. Det følgende er eminent til at illustrere
det, vi forsøger at bevise: flere spørgsm̊al, der er svære at besvare p̊a anden vis, løses
ofte ved de ’lineære beviser’ om division, om opdeling i det uendelige, samt om væk-
sthastighed. S̊a hvis en taler, som jeg skal vise i næste bog, skal tale om alt, kan han
p̊a ingen m̊ade være en taler uden viden om geometri.

Plutarchos (ca. 45-120), bedre kendt som Plutarch, var en græsk filosof og historieskriver. Han
forfattede en lang række værker, herunder en række mere eller mindre historisk velfunderede
biografier om b̊ade græske og romerske statsmænd. Grundopbygningen i biografierne er en
sammenligning af en græker og en romer. I Marcellus biografien5 omtales Archimedes. Her kan
vi læse:

Tekstboks 10: Plutarch om Archimedes

[. . . ] Archimedes havde et s̊a str̊alende intellekt, s̊a stor en sjælelig kapacitet og s̊a
stor en rigdom af videnskabelig indsigt, at selvom han gennem sine opfindelser havde
vundet sig et navn og et ry for at have en ikke menneskelig men guddommelig indsigt,
ønskede han ikke at efterlade sig noget værk om disse ting. [4] Han regnede nemlig
de mekaniske sager og al anvendt videnskab for ufin og h̊andværksagtig og havde kun
ambitioner om emner, hvis geniale løsning ikke har noget at gøre med den barske
nødvendighed. [5] Det er nemlig ikke muligt at finde vanskeligere og mere betydelige
spørgsm̊al i geometrien behandlet p̊a en mere simpel og ren form. Nogle tillægger det
hans naturlige begavelse, mens andre mener, at det skyldtes hans utrættelige arbejde,
at hvad end han gjorde, fremstod det nemt og let. Hvis nogen leder efter et bevis
og ikke kan finde det af sig selv, men lærer det af Archimedes, f̊ar man samtidig det
indtryk, at man kunne have fundet det selv. S̊a let og hurtigt leder han én p̊a vej til
det, der skulle bevises.

5En biografi, som sammenligner den thebanske general Pelopidas (fra 300-tallet f.v.t.) med den romerske
imperator Marcus Claudius Marcellus. Marcellus belejrede og indtog Syrakus i 213-212 f.v.t., hvilket giver
anledning til at nævne Archimedes, da han var fra Syrakus
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2 Newton

Isaac Newton (1643-1727) var en engelsk matematiker og naturvidenskabsmand. Man kan kalde
ham en af de mest betydningsfulde videnskabsmænd i 1600-tallet. Foruden en enorm indflydelse
indenfor fysikken, hvad ang̊ar bevægelses- og tyngdelove, har Newton ogs̊a haft stor betydning
indenfor arealbestemmelse.

Newton skrev værket Analyse ved ligninger med uendelig mange led (Oprindeligt p̊a latin:
De analysi per aequationes numero teminorum infinitas) omkring 1969, det blev dog først ud-
givet i 1711. I dette værk viser Newton, hvordan man kan finde arealer under kurver. Et citat
fra dette værk, hvor Newton gør sig nogle betragtninger om sit arbejde kan i se i tekstboksen
herunder.

Tekstboks 11: Newtons betragtning om sin egen metode

And whatever the common Analysis [that is, algebra] performs by Means of Equations
of a finite number of Terms (provided that can be done) this new method can always
perform the same by Means of infinite Equations. So that I have not made any
Question of giving this the Name of Analysis likewise. For the Reasonings in this
are no less certain that in the other; nor the Equations less exact; albeit we Mortals
whose reasoning Powers are confined within narrow Limits, can neither express, nor so
concieve all the Terms of these Equations as to know exactly from thence Quantities
we want. To conclude, we may justly reckon that to belong to the Analytic Art, by the
help of which the Areas and Lengths, ect. of Curves may be exactly and geometrically
determined.

Figur 5: Et udsnit af en tabel over Newtons arealbestemmelser af kurver
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2.1 Rule 1: Areal under simple kurver

Rule 1 (Regel 1) i Newtons On Analysis by Equations Unlimited in the Number of Terms6 er
Newtons regel for, hvordan man beregner arealet under en bestemt type af kurver, nemlig de
simple kurver7. Herunder kan i læse, hvordan Newton opskriver Rule 1 og hvordan han viser
den for et enkelttilfælde, som er tilfældigt valgt.

Tekstboks 12: Introduktion til On Analysis by Equations Unlimited in the Number of
Terms

The general method which I had devised some time ago for measuring the quantity of
curves by an infinite series of terms you have, in the following, rather briefly explained
than narrowly demonstrated
To the base AB of some curve AD, let the ordinate BD be perpendicular and let AB
be called x and BD y. Let again a,b,c,. . . be given quantities and m,n integers. Then:

Rule 1 If ax
m
n = y, then will na

m+nx
m+n

n equal the area ABD.

Efter dette viser Newton en masse eksempler p̊a blandt andet, hvordan man kan anvende Rule
1, og først derefter beviser han reglen. Han begynder med at begtragte et særtilfælde, nemlig
hvordan man finder arealet under den specifikke kurve y = x

1
2 :

Tekstboks 13: Bevis for Rule 1 : Et Eksempel

As I look back, two points stand out above all others as needning proof.
1. The quadrature of simple curves in Rule 1. Let then any curve ADδ have base
AB = x, perpendicular ordinate BD = y and area ABD = z, as before. Likewise
take Bβ = o, BK = v and the rectangle BβHK(ov) equal to the space BβδD. It is,
therefore, Aβ = x + o and Aδβ = z + 0v. With these premisses, from any arbitrarily
assumed relationship between x and y, I seek y in the way you see following
Take at willa 2

3x
3
2 = z or 4

9x
3 = z2. Then, when x+ o is substituted for x and z + ov

for z, there arises (by the nature of the curve)

4

9
(x3 + 3x2o+ 3xo2 + o3) = z2 + 2zov + o2v2

On taking away equal quantities ( 49x
3 and z2) and dividing the rest by o, there remains

4
9 (3x

2 +3xo+ o2) = 2zv+ ov2. If we now suppose Bβ to be infinitely small, that is, o
to be zero, v and y will be equal and terms multiplied by o will vanish and there will
consequently remain 4

9 × 3x2 = 2zv or 2
3x

2(= zy) = 2
3x

3
2 y, that is, x

1
2 (= x2/x

3
2 ) = y.

Conversely therefore if x
1
2 = y, then will 2

3x
3
2 = z. [...]

aLæs det som ’Vælg et vilk̊arligt...’

Derefter g̊ar han videre til at vise, at Rule 1 ikke blot gælder i det udvalgte tilfælde ovenfor,
men faktisk gælder for alle simple kurver, alts̊a kurver p̊a formen y = ax

m
n :

6Analyse ved ligninger med uendelig mange led p̊a dansk
7skal vi skrive hvad det er her? eller skal det udelades?
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Tekstboks 14: Bevis for Rule 1 : Det generelle tilfælde

Or in general if [n/(m + n)]ax(m+n)/n = z, that is, by setting na/(m + n) = c and
m+ n = p, if cxp/n = z or cnxp = zn, then when x+ o is substituted for x and z + ov
(or, what is equivalent, z + oy) for z there arises

cn(xp + poxp−1...) = zn + noyzn−1...

omitting the other terms, to be precise, which would ultimately vanish.a Now, on
taking away the equal terms cnxp and zn and dividing the rest by o, there remains
cnpxp−1 = nyzn−1(= nyzn/z) = nycnxp/cxp/n. That is, on dividing by cnxp, there
will be px−1 = ny/cxp/n or pcx(p−n)/n = y; in other words, by restoring na/(m + n)
for c and m+ n for p, that is, m for p− n and na for pc, there will come axm/n = y.
Conversely therefore if axm/n = y, then will [n/(m+ n)]ax(m+n)/n = z. As was to be
proved.

aHer forudser Newton alts̊a hvilke led han alligevel vil ende med at fjerne, fordi de indeholder o
mere end en enkelt gang, og s̊aledes stadig vil indeholde o efter han har divideret i gennem med et
enkelt o.

Herefter beskriver Newton, hvordan hans metode kan benyttes ikke blot til at bestemme arealet
under simple kurver, men at metoden ogs̊a kan benyttes til at opdage kurver som kan kvadreres,
ved at antage at vi kender en formel for arealet under kurven (men endnu ikke kender kurven
selv). Med metoden kommer alts̊a en høj grad af generaliserbarhed.
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2.2 Newtons værktøjskasse

Newton levede alts̊a knap 1700 år efter Archimedes og forventeligt, havde matematikken ud-
viklet sig. Der var kommet nye teorier til, nye m̊ader at argumentere p̊a og nye ting man un-
dersøgte matematisk. Udviklingen gør at Newtons værktøjskasse var anderledes end Archimedes.
I dette afsnit bliver der præsenteret de største landvindinger, som spiller en rolle for Newton.

2.2.1 Infinitesimale størrelser

Måske har du hørt, at integral- og differentialregning har en fællesbetegnelse, nemlig ’Infinites-
imalregning’. Det stammer fra tilbage før 1800-tallet, hvor man opfattede integral- og differ-
entialregning som regning med uendeligt sm̊a størrelser kaldet infinitesimaler. Man kan ogs̊a
tænke p̊a det som ’uendelig-dele’.
Det er vigtigt at forst̊a, at selvom infinitesimale størrelser er uendeligt sm̊a, s̊a er de ikke lig
nul, og da man ofte tænker p̊a dem som en tilvækst eller en afstand, kan man forestille sig at
de er positive (men meget meget sm̊a!) størrelser.

2.2.2 Den analytiske geometri

Analytisk geometri, ogs̊a kendt som koordinatgeometri, er en generel metode, hvor man om-
former geometriske spørgsm̊al til algebra. Denne metode bliver første gang beskrevet i 1637 af
Descartes (1596-1650) i værket La géométrie. Descartes var en fransk fysiker, filosof og matem-
atiker. En anden fransk matematiker, Pierre de Fermat (1601-1665), udviklede uafhængigt af
Descartes ogs̊a en koordinatgeometri. Den analystiske geometri var alts̊a tilgængelig for Newton.

Descartes kritiserede faktisk det syn p̊a geometri, som vi finder i Euklids Elementer og i Apollo-
nios’ værker om keglesnit. Descartes mente, at den s̊akaldte euklidiske geometri var for abstrakt
og afhang for meget af figurbetragtninger, idet de enkelte resultater som regel krævede nye idéer.

2.2.3 Hvad er en kurve?

Før 1700-tallet betragtede man kurver som en geometrisk størrelse, som det fx ses n̊ar man
tænker p̊a en parabel som et snit i en kegle. Med den analytiske geometri blev det muligt at
beskrive geometriske størrelser med algebraiske udtryk - s̊aledes ogs̊a kurver!
Det er eksempelvis det vi gør, n̊ar vi beskriver den rette linje med ligningen y = ax+ b, eller en
parabel med ligningen y = x2, og da udtryk af den art kan varieres i det uendelige, åbnede den
analytiske geometri op for uendeligt mange kurver, der endnu ikke var blevet arbejdet med.
For Newton var kurver dog ikke blot en geometrisk størrelse beskrevet med et algebraisk
udtryk. Han opfattede kurver som et objekt i bevægelse. Newton var nemlig ogs̊a fysiker -
han forestillede sig en partikel i bevægelse, der efterlader et ’spor’, som udgør kurven. S̊aledes
vil placeringen af partiklen være afhængig af hvor lang tid partiklen har været i bevægelse.
Derfor kan man tænke at han egentligt aldrig s̊a kurven som geometrisk, men det er m̊aske
mest et filosofisk spørgm̊al, og i praksis endte Newton ogs̊a med at beskrive sine kurver med
algebraiske udtryk, ligesom Descartes og Fermat.

2.2.4 Var der et funktionsbegreb?

I Newtons tid talte man ikke om funktioner p̊a samme m̊ade som vi gør i dag. Gottfried
Wilhelm Leibniz, som levede samtidig med Newton, var den første til at bruge ordet funktion
om en størrelse der afhænger af en anden størrelse. Det minder meget om det funktionsbegreb
vi kender i dag, men begrebet var endnu ikke færdigudviklet, og det blev det først over 100
år senere, hvor eksempelvis notationen med f(x), hvor f er en funktion der afhænger af x,
blev indført af Leonhard Euler. Derfor kan vi ikke sige, at det moderne funktionsbegreb var
tilgængeligt for Newton.
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2.3 Diskussion af Newtons metode

Selvom Newtons metode åbnede op for mange muligheder, var der problemer med stringensen,
hvilket ogs̊a er årsagen til at den moderne matematik griber tingene lidt anderledes an. Vi har
samlet lidt citater fra mere nutidige8 matematikere, som peger p̊a nogle af de problemer der
var med Newtons matematik.

Tekstboks 15: Senere matematikeres udtalelser om Newtons stringens

Bell (1945): ”He had no approach to a limit that would be recognized today.”

Kline (1953): ”[Newton] ... succeeded in doing [nothing] more with the limit
concept than confusing himself...”

Boyer (1959): ”This is the clearest statement Newton gave as to the nature
of ultimate ratios, but ... it is precisely this lack of arithmetical clarity which led
to controversial discussions ... as to what Newton really meant ... The meanings of
the terms ... ”prime and ultimate ratio” had not been clearly explained by Newton,
his answers being equivalent to tautologies ... Such an interpatation of Newton’s
meaning, which of course results in the ... indeterminate ratio 0

0 , is not unjustified.”

Dieudonné (1992): ”Newton [spoke] of ”ultimate values of vanishing quanti-
ties,” but this is only to cover up with words the imprecision of the ideas.”

Ogs̊a i Newtons samtid var der personer, der stillede sig skeptiske overfor metoden. Det fremg̊ar
i to citater fra Newton selv, hvor han forsøger at svare p̊a kritikken:

Tekstboks 16: Citater fra Newton selv

It can also be contended, that if the ultimate ratios of vanishing quantities [that is,
the limits of such ratios] are given, their ultimate magnitudes will also be given; and
thus every quantity will consist of indivisibles, contrary to what Euclid has proved....
But this objection is based on a false hypothesis. Those ultimate ratios with which
quantities vanish are not actually ratios of ultimate quantities, but limits which ...
they can approach so closely that their difference is less than any given quantity...

Og:

to avoid the tedium of working out lengthy proofs by reductio ad absurdum, in
the manner of the ancient geometers. ...I preferred to make the proofs of what
follows depend on the ultimate sums and ratios of vanishing quantities [instead of the
method of indivisibles]... For the same result is obtained by these as by the method of
indivisibles, and we shall be on safer ground using principles that have been proved.

Grænseværdibegrebet

Løsningen p̊a de problemer, der fulgte med Newtons metode, viste sig (blandt andet) at være
en introduktion af grænseværdibegrebet. I stedet for at sige, at en størrelse nogle gange er nul
og nogle gange ikke er nul, siger vi i dag at den bevæger sig mod nul, og undersøger hvad der
s̊a sker med andre afhængige størrelser.
Det moderne grænseværdibegrebet blev formaliseret i starten af 1800-tallet, hvor de drivende
krafter var Bernard Bolzano, Augustin-Louis Cauchy og Karl Weierstrass. Notationen limx→∞
blev dog først introduceret knap 100 år senere.

8Ja, 1945 er måske ikke nutidigt, men den moderne matematik var etableret i 1900-tallet.
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D Transcriptions

D.1 Conference 1.1

Student 1: Det bestemte integrale

Visiting Teacher: Det bestemte integrale. Og hvad skal man vide for at kunne lave

det bestemte integrale? [stilhed fra elev 1] I andre må også godt.

Hvad gør vi hvis vi skal finde det bestemte integrale her. Hvad for

nogle informationer har vi brug for?

Student 2: Vi skal kende grænserne

Visiting Teacher: ja, og hvad er grænserne her?

Student 2: Det hvor de der sider mødes

Visiting Teacher: mmh, Ja, og hvad tænker du? [en tredje elev markerer]

Student 3: altså det får vi ikke at vide og vi kender heller ikke forskrifterne

Visiting Teacher: nej [bekræftende]

Student 3: . . . så det kan vi faktisk ikke

Visiting Teacher: ja, det er lidt svært at vide præcis hvad forskriften er her ikke?

Sååå ... er der andre bud på hvordan vi kan gøre det? Ja dernede

bagved [en fjerde elev markerer]

Student 4: Et ubestemt integrale så?

Visiting Teacher: Men der skal vi faktisk stadig vide hvad en funktion er jo. (...) Men

hvis vi nu ikke ved hvad det her er en funktion og hvis vi ikke ved,

hvor lang, eller hvad grænserne er ift. koordinatsystemet. Hvad

kan vi så gøre? Hvad er jeres bedste bud?

Student 5: Tegne den

Visiting Teacher: Tegne den, og hvad så?

Student 5: . . . Det ved jeg ikke, måske skal vi bruge sådan et øøh, sådan noget

ternet papir? Til at tælle tern

Visiting Teacher: Så kan man tælle tern, ja, præcis. [Elev markerer] Ja hvad tænker

du?

(...)



Student 7: Altså man kan jo ikke regne noget når nu man ikke har nogle af

målene, så man kan bare selv angive mål

Visiting Teacher: Ja?

Student 7: så er det bare en skitse

Visiting Teacher: Så er det en skitse. Og hvor præcis bliver det så?

Student 7: Ikke så præcist. . .

Visiting Teacher: Men det er rigtigt, vi kan godt komme langt uden rent faktisk at

have et godt værktøj eller uden at have en funktion, ved bare at

måle og bare lave nogle tern og prøve på at se om vi kan komme

tæt på, ikke?



D.2 Plenum Discussion A

Visiting Teacher: . . . før der snakkede vi om hvad et geometrisk og hvad et mekanisk

argument. Er der nogle af jer der er kommer frem til noget her?

Student 1: Altså, et, det her er et mekanisk argument fordi at vi bruger altså

andre værktøjer i matematik til i hvert fald at tælle til noget** eller

forklare noget

Visiting Teacher: Andre værktøjer end hvad?

Student 1: øh, andre hvad?

Visiting Teacher: du sagde andre værktøjer

Student 1: altså f.eks. sådan noget at vi ved at, ja, altså sådan noget ’a’ er lig

med 3 gange ’b’ .. altså sådan vi bruger matematik til . . . [kan ikke

lytte]

Visiting Teacher: Ja det er rigtig nok, det giver god mening. Hvad tænker du bag

ved?

Student 2: Jamen også bare sådan noget med. Altså. Han starter med lige-

som at forklare hvad han gør og så til sidst så ser vi der her sådan

billede, geometrisk, figuren, hvor det ligesom er visualiseret. Jeg

tænker det er lidt det, der er forskellen på mekanisk og geometrisk.

Visiting Teacher: ja det kan man godt sige. Men han kommer faktisk aldrig, i den

tekst i har. Der kommer han faktisk aldrig til det rigtige geometriske

argument. Hvad tænker du?

Student 3: Altså jeg tænker bare at sådan geometrisk er mere i forhold til fig-

ure. Altså at han ligesom viser den her, hvordan man laver trekan-

ter inden i og [kan ikke høre der bliver hostet: 1:10]

Visiting Teacher: Ja, præcis så er der faktisk også geometri i det her ikke? Fordi der

er nogle figurer og nogle trekanter og sådan noget. Så hvad er det

så præcist så det mekaniske her? Hvis vi bare lige.. vi har været

lidt inde omkring det men hvad er det for en de præcist, der er

mekanisk i det her argument?

Student 4: Altså er det ikke at vi ligesom benytter ’a’ og ’b’ og reducerer det

og [*inddeler ud fra det*? Svært at høre, 1:28]



Visiting Teacher: Jo lidt, men altså det der med at man kan sige at ’a’ og ’b’ og de her

brøker og sådan noget. Det hed ikke brøker den gang. Men det

er faktisk også inden for geomtetrien. Så det er mere noget med

konteksten.

Student 5: øhm, jeg tænker det mekaniske må være det der ligevægtsprincip-

pet

Visiting Teacher: Lige præcis. Så hvorfor er det mekanisk? Hvad tænker i?

Student 5: det ved jeg ikke

Visiting Teacher: Hvad er mekanik? Altså hvad tænker i når i tænker mekanik

Student 6: altså det tager udgangspunkt i en sammenhæng man kan lave så-

dan i den virkelige verden

Visiting Teacher: ja, præcis. Så det er her hvor vi forestiller os at det faktisk er nogle

der har været ude og undersøge nogle ting. Og sagtn nå men hvis

jeg gør sådan her, og hænger noget her og så vejer det og så må

man vurderer det. Det er noget mekanik. Det er noget, sådan, vi

kan lave et forsøg ligesom i fysik og sådan noget, ikke. Hvor at

i geomtrien som er denne her ”rene matematik” og meget strin-

gente matematik. Der, der lever vi egentlig kun i vores hoveder.

Giver det mening? . . . Er det stadig lidt svært at forstå forskellen

på det her? Okay, det er helt okay. Så øh, Ved at samle op og

sige at Archimeds han mener altså at det her, det et geometrisk,

nej et mekanisk argument og han har senere lavet et geometrisk

argument. Men hvorfor, ikke bare starte med det geometriske?

Kan se se hvad der kan være fordelen ved at starte med noget

mekanisk? Hvis det ikke er rigtig matematik, hvorfor gør vi det

så overhovedet?

Student 7: altså hvis man bruger den mekaniske metode, så kan det give en

ide om, sådan, om det faktisk kan bevises

Visiting Teacher: lige præcis. Fordi for at vi kan bevise noget. Så skal vi vide hvad

det er vi skal bevise. Det kan være svært at bevise noget man ikke

ved endnu. Så her der bruger vi mekanikken til at undersøge, kan

det måske passe. Og kan vi så vise det rigtig. Ja. Okay. Jeg tænker

at vi lige hurtigt hopper tilbage til denne her figur [den gule]. Så

hvad tænker i nu? Er der nogle, der har nogle bud på hvordan

i vil regne arealet af. Før der snakkede vi om at vi kunne lave



nogle firkanter og så se om hvor mange lige firkanter er her. Kan

vi endnu mere præcis bestemme arealet af denne her? Og hvordan

gør vi det? . . . . Okay to minutter med sidemakkeren så prøv lige

at se, har Archimedes lært os noget til hvordan hvis vi har en lineal

kan vi så regne arealet af denne her?



D.3 Conference 1.4

Visiting Teacher: Hvad har i snakket om? Hvad er i kommet frem til? Og her er der

virkelig ikke nogle forkerte svar vel. Det her er virkelig bare hvad

synes i. Hvornår er noget bevist? Hvad tænker du?

Student 1: Altså vi sagde at øh sådan når noget man, altså når noget fungere

på samme måde hver evig eneste gang det bliver brugt

Visiting Teacher: og hvordan kan vi være helt sikre på at det gør det? Vi kan godt

gå videre [til elev som lige har svaret] hvad tænker du?

Student 2: Når man kan bevise at sådan et udtryk er sand.

Visiting Teacher: ja hvordan gør vi det? Hvad for nogle metoder bruger i? Har i

nogen sinde bevist noget i samfundsfag? [elever ryster på hovedet]

hvorfor ikke? Hvad tænker i?

Student 3: Der kan ikke sådan bevises noget i sådan i samfundsfag for der

kan være flere forskellige . . . .

Visiting Teacher: hvad med i matematik? Der kan vi godt. Hvordan gør vi det så?

Student 4: det er noget med at afprøve. Det skal være muligt at man sådan

kan sætte det under en test for så skal det sådan bestå det.

Visiting Teacher: så skal det bestå hver gang. Så hvis vi, hvis vi prøver, at vi allerede

siger at min hypotese er at jeg har den her vægtstang. Min hy-

potese er at den er i ligevægt hvis de her forhold, jeg havde skrevet

op før, holder. Hvor mange gange skal jeg teste det før at vi er sikre

på at det er rigtigt? Hvis jeg prøver to gange om det virker, er det

så et bevis? [elever ryster på hovedet] Hvor mange gange skal jeg

så gøre det? Er der et tal?

Student 5: Nej men hvis man ikke er i tvivl mere [kan ikke høre] (1:30)

Visiting Teacher: altså faktisk vil jeg bare mene at man aldrig har bevist det. Det

er fordi at jeg er sådan en rigtig dum matematiker som siger at,

hvis vi bare eksperimenterer og gør noget. Selv hvis vi gør det 1

million gange, så kan det godt være at der er noget der har ændret

sig ved 1 million of første gang. Men jeg synes stadig der er noget

der er beviser. Hvad er det i kalder beviser? Hvornår har i fået

præsenteret noget som et bevis i skolen?

Student 6: Formler



Visiting Teacher: ja, formler. Så det der er med formler. Det er der siger vi at der har

vi nogle antagelser. Vi antager f.eks., så er der nogle ting er gør at

vi ved 100 procent at 2 plus 2 er 4. Og så når vi har de her regler,

så kan vi spille under dem og så kan vi bevise noget. Okay og i må

gerne gå og tænke lidt mere over det her til i morgen.



D.4 Conference 2.1

Visiting Teacher: Det lyder som om at I er begyndt at have fået valgt nogle ting og

har skrevet lidt ned. Jeg vil gerne lige starte med at I bare fortæller

én af de ting I har valgt?

Student 1: Det hele er større end en del af det

Visiting Teacher: Hvad betyder det?

Student 1: Øhm vi snakkede om noget brøk, noget med man har en hel brøk

og så har man altså et helt tal og så brøker det er så mindre end det

Visiting Teacher: Mmmh, ja, klart, så hvordan er en... hvad er det der er en del og

hvad er det der er det hele når vi kigger på en brøk?

Student 1: Jeg ved det ikke

Visiting Teacher: Hvis I har en brøk så er der noget der er det hele og noget der er

en del af det

Student 1: det må så være ... [mumle mumle]

Visiting Teacher: Ja, præcis. Okay, cool. Hvad med jer der sidder her? Er det to

grupper eller en?

Student 2: Ja det er to grupper ja, vi har skrevet størrelser der kan dække...

så er der et eller andet ord, det forstod vi ikke... hinanden er lige

store

Amanda: Kommensurable

Student 2: [mumle mumle]

Visiting Teacher: Ja, lige præcis, og hvad... minder det om noget vi kender?

Student 2: Jamen det er sådan vi tror det er på to papirer jo [??] så kan man

vende om på den ene og så kan man se den dækker, jamen så må

de være ens.

Visiting Teacher: Ja, præcis, cool! Og hvad med den anden gruppe her?

Student 3: Ja altså der står... Parallelle linjer er rette linjer, der ligger i samme

plan, og som, når de forlænges ubegrænset til begge sider, ikke

mødes til nogen af siderne.

Visiting Teacher: Ja



Student 3: Det tænker vi er meget det samme som det vi har i dag

Visiting Teacher: Helt klart! Ja det er sådan vi tænker på paralelle linjer i dag også,

ikke også? Ah men helt klart! Er der nogen af jer der bare har

kigget sådan på definitionen af en linje? Ja?

Student 4: det.. jeg kunne ikke helt høre om det var det du sagde men altså,

ej det er jo så en ret linje, ja en ret linje.

Visiting Teacher: Jaja men, ja

Student 4: Ja, en ret linje er en linje som ligger lige mellem punkterne på den

Visiting Teacher: Ja, præcis så hvad er det der bliver sagt dér? Hvis vi [tegner] har

to punkter og så prøv lige at sige igen, hvad står der?

Student 4: Ja, en ret linje er en linje som ligger lige mellem punkterne på den

Visiting Teacher: yes, okay, så, ’lige’ det er også sådan en ting hvor man tænker det

ved man godt hvad betyder ik? Men det kommer jo et eller andet

sted fra, det betyder at vi ikke gør sådan her men vi siger det er

faktisk den korteste afstand i virkeligheden ikke.. Nu kan jeg ikke

tegne lige, men jeg håber I ved hvad jeg mener hehe.

Men det vi også skal vide here ik, det er hvis den ligger lige mellem

punkterne på den. Men hvad er et punkt? Ja?

Student 2: Noget der ikke kan deles

Visiting Teacher: Ja! Hvad betyder det?

Student 2: Altså jeg tænker det betyder at altså det er i altså så lille en størrelse

at det ikke rigtig er noget...

Visiting Teacher: Ja, præcis, så hvis jeg spørger hvor stort er et punkt, hva...? Hvor

stort er et punkt? Ja?

Student 4: Det har vel ikke en størrelse, det kan være mange forskellige stør-

relser [?]

Visiting Teacher: Ja! Og hvad så med en linje? Hvor stor er en linje?

Student 4: Det kan også være en masse... ja... Det har i hvert fald ikke nogen

bredde

Visiting Teacher: Ja, det har ikke nogen bredde, lige præcis, men det har en længde,

ikke også? Så vi kan faktisk godt måle en linje. Kan vi tage arealet

af en linje? Nej? Der er nogle der ryster på hovedet? Ja?



Student 4: Nej

Visiting Teacher: Hvorfor ikke?

Student 4: Fordi at arealet skal ligesom have et område hvor vi har ikke noget

område bare på en enkel linje

Visiting Teacher: Nej, rigtigt, så hvis vi skulle prøve at sige det her i sådan moderne

termer, hvis der er noget der ikke har nogen bredde. Ja

Student 2: Altså så er den vel to-dimensionel.

Visiting Teacher: Lige præcis! Og hvad skal den være for at vi kan tage arealet?

Student 2: tre-dimensionel

Visiting Teacher: Ja! Okay, så den her måde Archimedes han gør det på, han siger

en linje det er noget der ligger mellem to punkter, er det sådan I

tænker på linjer i dag også? Er det også en linje i moderne, altså for

Archimedes der var en linje noget der ikke havde nogen bredde.

Hvad med i dag? Er det det samme? [stilhed] Hvis I glemmer det

her var et historieforløb... hvis [general teacher] bare sagde, hvor

bred er en linje? Hvad ville I så svare? Hvis han havde spurgt for

en uge siden. Ja?

Student 5: Nej... [mumle mumle] bred

Visiting Teacher: Nej, så er det det samme hos Archimedes? Ja! Lige præcis, så

på den måde er det faktisk ikke så meget der har ændret sig vel?

Okay? Nå, men det vi så kan se her, det er at hvis vi kigger på fx

linjer og også mange af de andre ting så er det det samme vi arbe-

jder med, og de matematikere der har lavet den moderne matem-

atik de har også snakket om Archimedes og at han sagde det her,

eller Euklid sagde det her, og det bruger vi stadig i dag. Men der

er også nogle ting der har ændret sig siden. Så selvom at linjebe-

grebet er det samme, så er der noget matematik vi har i dag som

Archimedes ikke kendte til. Og det er det som vi skal kigge på nu,

det er prøv i grupper, prøv at sætte jer ned og snak om, hvad er det

for nogle ting som I kender til, som Archimedes ikke kendte til. Er

der noget som I har lært af [general teacher] i undervisningen eller

i folkeskolen eller noget, er der noget I har lært til at bestemme

arealer eller til andre ting, som Archimedes ikke kunne. Ja?



D.5 Plenum Discussion B

Visiting Teacher: okay så lad og prøve at se om der er nogen der er kommet frem til

et eller andet spændende. Der har nogen spørgsmål. Eller et eller

andet i er nysgerrige på omkring det her.

Student 1: Vi kom frem til det her med at han mener det, når noget er demon-

streret så er det bevist. . . . [kan ikke høre dette]

Visiting Teacher: Hvad betyder det at noget er demonstreret

Student 1: at det sådan er vist

Visiting Teacher: og kan vi komme endnu tættere på hvad det egentlig er hvornår

noget er bevist? Er det her et bevis? Det han laver. Fra det i læser

her. [absolut stilhed] Okay så prøv at, nu, prøv at kigge lidt videre

og prøv at sig, okay, men synes han rent faktisk selv, hvis i kigger i

forordet og i må også gerne google. Synes Archimedes selv at det

her er et godt bevis.

Student 2: Men er det egentlig et bevis så i forhold til at han siger at han

bruger sådan mechanism. Eller mechanics?

Visiting Teacher: Ja han bruger mekaniske argumenter

Student 2: til at løse problemer

Visiting Teacher: Synes Archimedes at. Så spørgsmålet er synes Archimedes at man

kan bevise noget med mekaniske argumenter

Student 2: øøøh, ja

Visiting Teacher: ja [skeptisk], nej, var min tone meget ledende, nej ikke rigtig

Student 2: nej det kan man så ikke

Visiting Teacher: [en tredje elev markerer] hvad tænker du?

Student 3: altså han siger at han først bruger det der mekaniske metode og

så bagefter demonstrere det med geometri. Altså den mekaniske

metode kan sådan ikke sådan bevise det. Altså det er ikke en fak-

tisk demonstration (OBS! Dette var svært at høre)

Visiting Teacher: nej, lige præcis. Han siger nemlig, han har den her mekaniske

metode og det er rigtigt og så siger han men bagefter så skal vi

vise det med geometri. Så øh hvad er forskellen på en mekanisk



metode og en geometrisk metode? Er der nogle der har nogle

tanker om det? Hvorfor er det her mekanisk? . . . .. Ellers så snak

lige om det hvad er forskellen på den mekaniske og den geometriske

og hvorfor er det mekaniske argument ikke godt nok? Og så snakker

vi videre om det. Og husk og skriv nogle noter i dokumentet også

undervejs.



D.6 Conference 2.3

Visiting Teacher: Okay, er der nogle der har nogle bud? Hey, vi samler lige op igen,

så jeg kan sige så meget at jeg har hørt nogle af jer sige det rigtige,

så øh, måske er det med at sige det man tænker, hvad er det han

vejer? Hvad er det vi hænger i vægtstangen? Han har et eller andet

som han sætter herud ja

Student 1: Ja på den der figur han er i gang med at bruge, figur 3, der har han

jo noget TGH

Visiting Teacher: Ja, og hvad er THG?

Student 1: det er en eller anden form for, altså, ligevægt med trekanten

Visiting Teacher: Jaaaah... selve THG, hvad er det for en slags ting?

Student 2: En linje

Visiting Teacher: En linje, så det er linjer! Det er faktisk bare det, ja, nu fiskede jeg

efter noget, heh, så han har noget et punkt her, hvor han hænger

linjer ud i, ikke også, hvad er det vi ved om linjer? Hvad vejer en

linje? Ja? Hvad vejer en linje?

Student 3: Den vejer ikke noget

Visiting Teacher: Nej, så hvordan kan vi hænge den ud i en vægtstang? Det virker

lidt mærkeligt ikke? Så det er faktisk her hvor vi tager noget der

ikke har en vægt, og så siger at det er i ligevægt omkring et eller

andet, men det er måske lidt svært at snakke om på den måde

ikke? Det andet han så gør det er han siger, han gør det her med

alle der her linjer, ned gennem her, og så siger han nå men hvis

vi tager alle mulige linjer, så har vi i princippet taget hele figuren

ikke? Hvor mange linjer skal jeg lave i denne her figur før jeg har

hele figuren? Okay, vi tager lige, altså 1, 2 minutter igen, prøv at

overveje, hvor mange linjer skal jeg lave før jeg kan sige jeg har

hele figuren? Hvor mange linjesnit ned gennem parablen skal jeg

lave før jeg har hele figuren. ... I har et bud! Ja?

Student 4: uendelig

Visiting Teacher: Uendelig mange linjer! Fordi, og hvad så hvis vi sagde vi havde

uendelig mange linjer, havde vi så hele figuren

Several Students in Plenum: [sporadisk] Nej...



Visiting Teacher: Nej, så der er noget her der virker lidt underligt ikke også?

Several Students in Plenum: Ja

Visiting Teacher: Ja, og faktisk så er det så underligt, at selv de gamle grækere de

havde et navn for hvad de her linjer var, og det er et lidt underligt

navn, men de kaldte dem for indivisible, og det kan I også se i jeres

kompendie. Og indivisible det er ting som der, øh, vi forestiller

os ligesom at de ikke har nogen bredde, så derfor kan vi heller

ikke dele dem. Ligesom vi snakkede om før så et punkt det er

det der ikke kan deles. En linje, det kan jo godt deles på den ene

led, men det kan ikke, nu kigger vi på linjer der, de kan jo ikke

deles i bredden, så derfor så, så har vi sådan i princippet så siger vi

at denne her figur er udgjort af uendeligt mange linjer, og det kan

der være nogle problemer med, og det var de godt opmærksomme

på, de gamle grækere. Og I kan se i kompendiet at der er en lille

tekstboks fra, af, Demokrit, er det rigtigt?

Amanda: Jo, det tror jeg, jo

Visiting Teacher: som skriver om, øh, hvad han egentligt mener om de her indivisi-

ble. Og jeg, nu, prøv lige at sætte jer ned, og det er lidt svært kon-

cept at forstå, men læs om indivisible, og I må gerne bruge Google

også. Og så prøv at se i kompendiet hvad det er som der, denne

her anden græker har sagt om indivisible. Og prøv at tænke over

hvorfor det er det kan gå galt.



D.7 Conference 2.4

Discussion briefly after Conference 2.4:

Visiting Teacher: Hey, håber der er lidt flere der vil sige noget her. Hvad siger du?

Student 1: Vi tænkte noget med en retvinklet trekant, øh, inde i den her, og så

har vi da i hvert fald noget af arealet, på en eller anden måde, og

så lidt i stil med det andet hvor vi gangede med 4
3 , så gangede vi

med noget igen.

Visiting Teacher: Ja, kan vi gøre det ligesom Archimedes? Kan vi gange med 4
3 her?

Nej nej, men altså... Altså, nogle der har nogle tanker, hvorfor kan

vi godt, hvorfor kan vi ikke? Hvad skal der gælde for at vi kan

bruge det Archimedes sagde? Ja?

Student 2: (pige forrest med brunt hår) Det skal vel være en parabel

Visiting Teacher: Ja! Er det her en parabel?

Student 2: Nej

Visiting Teacher: Det ved vi i hvert fald ikke nødvendigvis at det er, vel?

Student 2: Nej, i hvert fald ikke en hel parabel.

Visiting Teacher: Nej. Men altså vi kan sige, hvis det er et udsnit af en parabel, så

kan vi godt gøre det sådan her. Så laver vi en retvinklet trekant.

Okay. Så det her... det er noget, hvad er det, hvad er det der, vi ved

ikke hvad det er for en funktion her, vel? Men vi er, nu skal vi snart

ind i noget som er, om, lidt mere moderne, vi er ude i sådan noget

1600-tallet, hvor vi faktisk begynder at kigge på de her funktioner,

eller noget som minder om de funktioner som vi kender i dag. Og

det vi skal snakke om i morgen det er en gut der hedder Newton,

som netop kunne regne arealet af sådan nogle figurer som den I så

lige før, det er det vi kommer til at fortsætte med, I behøver ikke

tænke så meget mere over det lige nu. Men så er I klar over hvad

der kommer til at ske. Okay, så resten af modulet her der vil jeg

bare gerne lige have jer til at få uploadet jeres nye skærmoptagelser

i den samme mappe.. [optagelse afbrudt]



D.8 Plenum Discussion C

Visiting Teacher: Så øh, vi er fuldstændig klar over at det er en svær tekst det her.

Men har i fået lidt mere, sådan, en ide om hvordan han, hvordan

han skriver om sin matematik. Vi snakkede før om det her at han

laver en regel. Men er der mere i strukturen vi kan sige noget om?

Hvad han gør i de her bokse. [pause] så først så siger han jeg har

denne her regel. Den hedder regel 1. Hvad er så det næste Newton

skriver? [pause] i behøver ikke, sådan at kunne sige præcist hvor-

dan han argumenterer for det, men hvordan at han gør i det næste

[pause]

Student 2: han laver et bevis for reglen med et eksempel

Visiting Teacher: ja han laver et bevis med et eksempel. Lige præcis. Så lige i starten

af denne her time, snakkede vi om det her med at der er forskel

på hvornår noget er et eksempel og hvornår noget er et bevis. Men

hvad er det så det her? Har i nogle tanker om det er et bevis eller et

eksempel han kommer med? [lang pause] når man beviser noget

med et eksempel.. [elev markerer]

Student 3: så er det en demonstration. Om hvordan han bruger reglen

Visiting Teacher: ja præcis så det er ikke bare, hvad siger sætningen men også hvor-

dan vi kan bruge denne her regel. Hvad gør han så efter at han har

lavet det her bevis for et eksempel. [lang pause] okay så, 1 minut

snak lige med sidemakkeren, hvad gør han efter at han har bevist

det med et eksempel. Så samler vi op lige om lidt.



D.9 Conference 3.4

Below is the transcription of Conference 3.4, including a follow-up plenum discussion just prior to

Conference 3.4.

Visiting Teacher: Okay, hvad er det, der sker her? Er der nogle af jer der kan se hvad

han gør, hvad er det for nogle udregninger han laver? Hvis vi bare

kigger på linjerne der står. [pause] Er der bare nogle af de her ting,

hvor i tænker det her det ved jeg godt hvad betyder. Jeg tror ikke

på at i læser det her og ikke forstår noget som helst af det. Er der

nogle af de ting han gør som i godt kan forstå? Plusser han med

noget.. ganger han med noget.. Hvad gør han? [mumlem]

Student 1: han tager et eller andet og så, og så dividerer han resten med ’o’

Visiting Teacher: ja præcis. Så denne her første sætning kan jeg godt forstå den er

lidt mærkelig. Det han siger: ’taking away equal quantities’. Hvad

tror i ’taking away’ kan oversættes til?

Student 2: minus

Visiting Teacher: minus præcis. Så han, han siger, okay vi ved z i anden er det

samme som 4/9x i tredje. Det står heroppe. Så hvis vi sletter det

samme på begge sider, så må vi godt det ikke, Det er en regel i

godt kender, indenfor ligningslæsning. Og så dividerer han med

’o’. Det er også noget vi godt kan gøre ikke? Vi kan altid bare di-

videre med det samme over det hele, ikke? Godt. Okay og så har

vi et eller andet udtryk tilbage. Så står der her ’if we now suppose

bbeta to be infinitely small that is ‘o’ to be zero’. Så hvad er det vi

gør nu?

Student 3: Det er sådan så han sletter det der mellemrum på . . . (jeg har svært

ved at høre det præcise ord her – 16:09) og så har vi så kun det

resterende

Visiting Teacher: præcis, så vi tager denne her afstand og så forestiller vi os ligesom,

hvis den er nul, jamen så vil arealet af det her, altså hvis det her

stykke er nul, hvad bliver arealet så af denne her firkant?

Student 4: nul

Visiting Teacher: nul, lige præcis. Så nu gør vi det helt vildt småt. Det her, det er

sådan. Lad os sige de her tricks han laver her hvor han dividerer



med ’o’ og så gør han det meget meget småt bagefter. Det er noget

af det som Newton var meget meget kendt for. Og det var meget

nyt på det her tidspunkt, at man gjorde det på den her måde fordi

at man kunne vise noget meget generelt. Men, nu her til sidst, så

sætter i jer ned og så overvejer i lige i grupperne denne her metode.

Er der nogle problemer med det? Er der noget der er mærkeligt?

Ville det gå i dag? Og hvis i ikke har nogle bud på det, så bare skriv

nogle noter om, hvad det er vi lige har arbejdet med og hvordan

det her bevis forløber i jeres dokument. . . . arbejdspause . . .

Visiting Teacher: okay super lad mig høre hvad i tænker her. Er der nogle tanker

omkring nogle problemer?

Student 5: han dividerer med nul

Visiting Teacher: gør han?

Student 5: det må man ikke

Visiting Teacher: og hvor gør han det henne? Han siger at han dividerer med ’o’

ikke?

Student 5: ja, men ’o’ det var så nul. Han sætter ’o’ til at være nul

Visiting Teacher: altså det er jo rigtigt, altså men det han jo i virkeligheden siger det

er at han siger, vi dividerer med ’o’ og så siger vi at ’o’ var nul. Så

han starter faktisk bare med at fividerer med det og så siger han.

Her var det ikke nul, det er først nul bagefter. Det er helt rigtigt.

Det er her der er nogle problemer med det. Det er i hvert fald her

hvor vi er lidt skeptiske overfor hvad der foregår.



D.10 Conference 4.2

Below is the transcription of Conference 4.2, including a follow-up plenum discussion just prior to

Conference 4.2.

Visiting Teacher: okay lad mig høre har i et bud på, hvad det er vi kigger på med

de her infinitesimaler? Okay jeg prøver lige at spørge på en anden

måde. Hvor har i kigget henne? Hvor har i prøvet at finde svar på

det her spørgsmål?

Student 1: google

Visiting Teacher: google ja, og hvad dukker der op når man kigger på google

Student 1: at de er så små at man ikke kan måle dem eller se dem.

Visiting Teacher: ja præcis, minder det om, ja hvad siger du?

Student 2: altså det er bare sådan at man betragter dem som 0 men at de ikke

helt er det [LIDT SVÆRT AT HØRE]

Visiting Teacher: ja præcis, så der kan man godt se lidt at det er det Newton gør her,

ikke? Minder det om noget? Vi har arbejdet med? det her med

noget der er så småt at det øhh, ja?

Student 3: De der indivisible [udtalt forkert]

Visiting Teacher: ja indivisible. Jeg tænker at det var det du mente. Præcis, så er det

de samme som de indivisible? [pause]

Student 4: Nej for det var vel noget der ikke kunne deles op. Det var sådan

noget som altså linjer og sådan noget i bredden . . . . [BLIVER UK-

LART TIL SIDST]

Visiting Teacher: ja, præcis, så de havde ikke nogen bredde overhovedet, vel? Så

hvad er det der er det infinitesimale på den her tegning? Tag den

lige igen i grupper og så prøv og find ud af hvad er det der er det

infinitesimale, hvis vi skal pege på det. Snak med hinanden om

det og så samler vi op. Ny seance 11:05

Visiting Teacher: hvis vi kigger på den her tegning, hvad er det så [afbrudt af støj]

hvad er det der er noget infinitesimalt?

Student 5: er det ikke ’o’?



Visiting Teacher: jo det er denne her ikke. Så det han i virkeligheden gør og nu vil

jeg lige prøve at forklare jer lidt mere om hvad der foregår i beviset.

Og det er helt fair at man ikke lige kan læse det ud fra. Det er bar

for at sige, hvad er det egentlig han gør her. Og det han gør, det

er at han kigger jo på. Han kigger på det fulde areal her. Og så

sammenligner han det med z. og så siger han, okay, det her det er

jo to forskellige arealer. Denne her røde, den er jo helt klart større

end z. Men hvis vi nu sætter denne her til at være uendelig lille.

Denne her afstand. Så er de jo det samme, de to arealer, ikke? Så

det er det han kigger på. Så man kan sige, så har han lavet den her

firkant, den snakkede vi også lidt om i går ikke? Eller i onsdags.

Han har lavet den her firkant. Og så siger han, nå men, den her

firkant her, det er sådan en søjle af en art. Den har samme størrelse

som denne her tilvækst. Så hvad sker med arealet af denne her

firkant når vi sætter ’o’ til at være lig med 0? eller uendeligt smat?

Hvad bliver arealet så af denne her rektangel. Ja?

Student 6: 0

Visiting Teacher: ja lige præcis. Så både, altså begge arealer det bliver jo uendeligt

små. Det bliver ikke helt 0, men de bliver så tæt på 0 man over-

hovedet kunne forestille sig. Okay, så nu er vi her hvor denne her

rektangel den har en eller anden bundlinje som der er næsten 0. Så

hvilken dimension er den i? hvor mange dimensioner er denne her

firkant i? [lang pause] okay så tag lige et minut med sidemakkeren,

hvor mange dimensioner har vi her?
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